

Comparaison de 2 séquences

UE ASM1

O. Lecompte
Laboratoire de Bioinformatique et de Génomique Intégratives – IGBMC

http://www-bio3d-igbmc.u-strasbg.fr/~lecompte/enseignement.html

Comparaison de 2 séquences

- Introduction :
 - notions de base
 - systèmes de scores (matrices de scores, pénalités de gaps)
- Comparaison par la matrice de points (dotplot)
- Alignements optimaux

Odile Lecompte -IGBMC

Comparaison - Pour quoi faire?

- localiser un gène sur un génome
- recherche de similarité dans une banque transférer des informations connues sur une nouvelle séquence
- recherche de domaines ou motifs conservés identification de résidus importants pour la structure ou la fonction
- reconstruire l'histoire évolutive d'une famille de gènes...

information sur la fonction, la structure et l'évolution des molécules

Odile Lecompte -IGBMC

ASM1

Similarité et homologie

Similarité

- mesurée en % d'identité ou en % de similarité
- la similarité n'a pas directement de connotation évolutive

2 séquences peuvent être similaires

⊗ par hasard

ex: région de faible complexité

par évolution convergente

ex: subtilisine et chymotrypsine sont 2 serine protéases avec la même triade catalytique (Ser, His, Asp)

mais séquences et structures 3D différentes

par évolution divergente

elles dérivent d'une même séquence ancestrale

Odile Lecompte -IGBMC

Similarité et homologie

<u>Homologie</u>: 2 séquences sont homologues si elles descendent d'un ancêtre commun

il n'existe pas de pourcentage d'homologie !!!

- Une similarité significative (>20% d'identité) est <u>généralement</u> le signe d'une homologie
- Une similarité non significative ne veut pas dire que les séquences ne sont pas homologues

Ex: myoglobine des mammifères et leghémoglobine des plantes

séquences : moins de 20% d'identité même structure

Odile Lecompte -IGBMC

ASM1

Séquences nucléiques ou protéiques ?

- alphabet réduit dans le cas des séquences nucléiques
 - distinction entre le signal et le bruit plus difficile
- redondance du code génétique
 - mutations silencieuses → similarité plus longtemps observable au niveau des séquences protéiques

Alignement d'une région conservée de 3 récepteurs nucléaires au niveau nucléotidique et protéique

Odile Lecompte -IGBMC

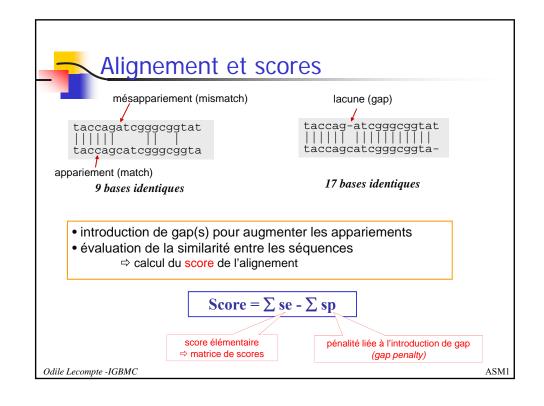
Les différents types d'alignements

Alignement deux à deux (pairwise alignment):

ex : recherche de similarité dans une banque => Fasta, Blast

Alignement multiple:

ex : alignement d'une famille de protéines => clustalx, DbClustal, mafft, multiZ


Alignement global

sur la totalité de la longueur des séquences

Alignement local

alignement de la ou des régions les plus fortement conservées => Intéressant si les séquences ne sont pas colinéaires

Odile Lecompte -IGBMC

Matrice d'identité utilisée dans blastn

La valeur du score élémentaire est de :

- 1 entre bases identiques
- -2 entre bases différentes (« mismatch »)

	Α	C	G	T
A	1	-2 1 -2 -2	-2	-2
\mathbf{C}	-2	1	-2	-2
G	-2	-2	1	-2
T	-2	-2	-2	1

Autres matrices

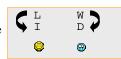
D'autres matrices privilégient certaines mutations.

ex : transitions moins pénalisées que les transversions

	A	C	G	T
A	1.36	-1.60	-0.37	-1.60
C	-1.60	1.36	-1.60	-0.37
G	-0.37	-1.60	1.36	-1.60
Т	-1.60	-0.37	-1.60	1.36

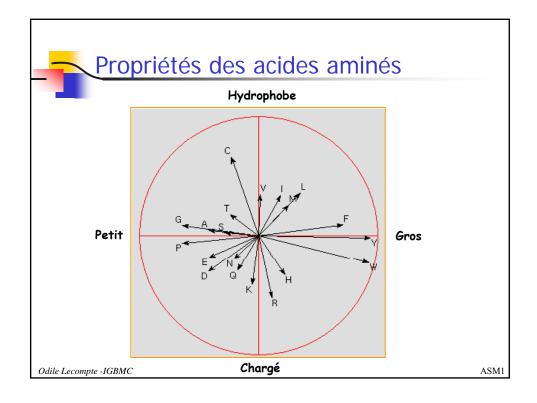
Odile Lecompte -IGBMC

ASM1


Les matrices protéiques

Les matrices de substitution :

valeurs proportionnelles aux probabilités qu'un acide aminé i soit remplacé par un acide aminé j


score élevé pour les substitutions

- fréquemment observées
- ne modifiant pas la structure ni la fonction de la protéine (substitutions **conservatives**)

Exemple de matrices : PAM, BLOSUM, GONNET

 $Odile\ Le compte\ \hbox{-} IGBMC$

Les matrices protéiques

basées sur :

le code génétique (Minimum Mutation Matrix)

nb de changements nécessaires au niveau nucléique pour passer d'un acide aminé à un autre ex : matrice de Fitch, 1966

les propriétés physico-chimiques des acides aminés

ex : matrice de Levitt (1976) basée sur des mesures d'hydrophobicité des acides aminés

• les substitutions « observées » au cours de l'évolution

ex: les matrices PAM, BLOSUM, GONNET

=> les plus couramment utilisées

Odile Lecompte -IGBMC

Matrices de Dayhoff (matrices PAM)

Référence

Dayhoff *et al. A Model of Evolutionary Change in Proteins*. In Atlas of Protein Sequence and Structure. Volume 5 (sup. 3):345-352 (1978)

Alignements utilisés

- 71 familles de protéines très proches : de 15 % de différence
- Alignement global pour chaque famille
- Arbre phylogénétique pour chaque famille
- Reconstitution des séquences ancestrales selon le principe de parcimonie (minimum de changement)
- Décompte des substitutions permettant de passer des séquences ancestrales aux séquences observées

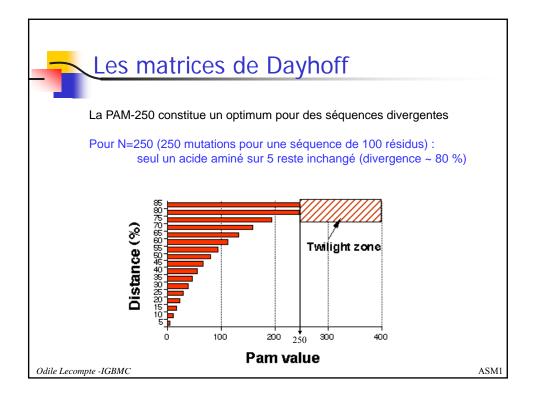
Odile Lecompte -IGBMC

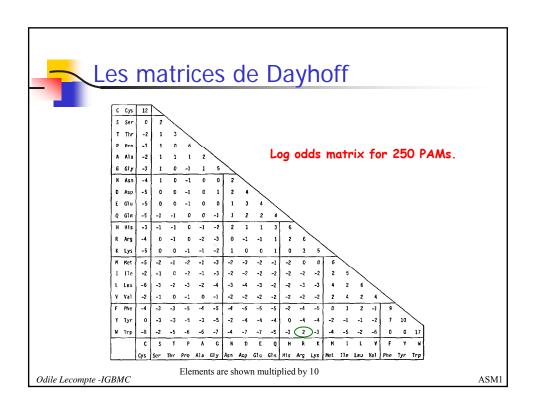
ASM1

La série des PAM

basées sur :

- les substitutions observées entre aa dans le set de référence
- la mutabilité et fréquence relatives des résidus


Relative Mutabilities of the Amino Acids								
	Asn	134	His	66				
	Ser	120	Arg	65				
	Asp	106	Lys	56				
	Glu	102	Pro	56				
	Ala	100	Gly	49				
	Thr	97	Tyr	41				
	Ile	96	Phe	41				
	Met	94	Leu	40				
	Gln	93	Cys	20				
	Val	74	Trp	18				
	The value for Ala has been arbitrarily set at 100							


f_i : fréquence relative des aa dans les données utilisées

dans les demices dimoces							
	Gly	0.089	Arg	0.041			
	Ala	0.087	Asn	0.040			
	Leu	0.085	Phe	0.040			
	Lys	0.081	Gln	0.038			
	Ser	0.070	Ile	0.037			
	Val	0.065	His	0.034			
	Thr	0.058	Cys	0.033			
	Pro	0.051	Tyr	0.030			
	Glu	0.050	Met	0.015			
	Asp	0.047	Trp	0.010			

- PAM1 : la probabilité globale de mutation est ~1% pour chaque aa
- Obtention de la série : PAM-N = (PAM-1)^N avec N, nb de mutations pour 100 résidus

Odile Lecompte -IGBMC

Les matrices BLOSUM

BLOSUM = BLOcks SUbstitution Matrix

Référence

Henikoff and Henikoff. *Amino acid substitution matrices from protein blocks*. PNAS 89:10915-10919 (1992)

Alignements utilisés

BLOCKS : banques d'alignements multiples de régions conservées (sans gap)

Plus de 2000 « blocs » ont été utilisés

WWNAGMIPVPYV
WCEAGWVPSNYI
WWKGGMFPRNYV
WWRAGYIPSNYV
WMYGGMLPANYV
WWRGLWFPSNYV
WLNGGDFPGTYV

WWNAGMIPVPYV Exemple de segments similaires

 $Odile\ Le compte\ \hbox{-} IGBMC$

ASM1

Les matrices BLOSUM

Matrice logarithmique de probabilités :

$$\mathbf{S}_{ij} = \log_2 \left(\mathbf{q}_{ij}/\mathbf{e}_{ij}\right)$$
 fréquence de substitution observée fréquence de substitution attendue

sij = 0 fréquences observées identiques aux fréquences attendues

sij > 0 - supérieures

sij < 0 - inférieures -

Odile Lecompte -IGBMC ASM1

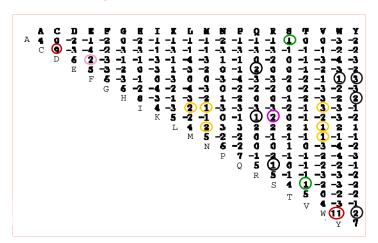
La série des matrices BLOSUM

Les matrices BLOSUM diffèrent par le pourcentage d'identité entre les séquences utilisées.

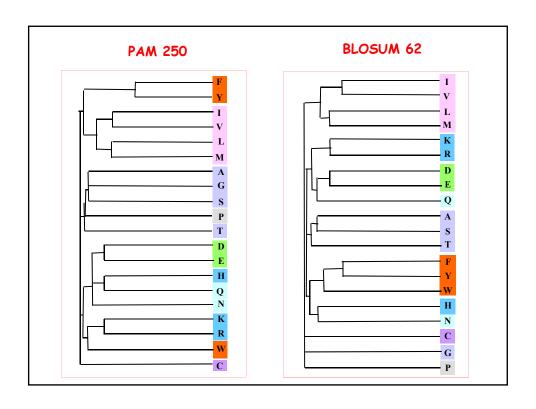
Ex: la matrice BLOSUM 62

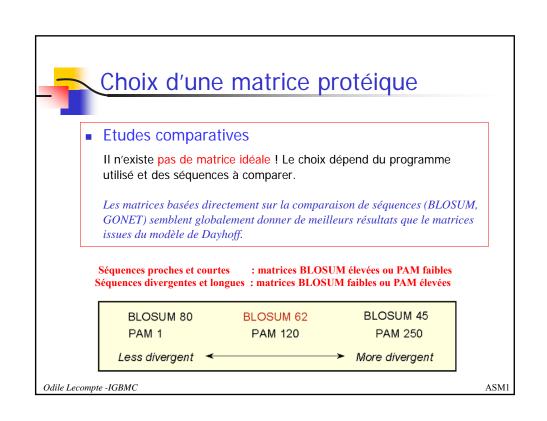
calculée sur des blocs de séquences ayant au moins 62% d'identité

matrices les plus utilisées dans les alignements de paires de séquences


Odile Lecompte -IGBMC

ASM1




Les matrices Blosum

The log odds matrix for BLOSUM 62

Odile Lecompte -IGBMC

Pénalisation des gaps

L'introduction d'un gap dans un alignement représente une insertion ou une délétion => Coût qu'il faut estimer

Systèmes de pénalités :

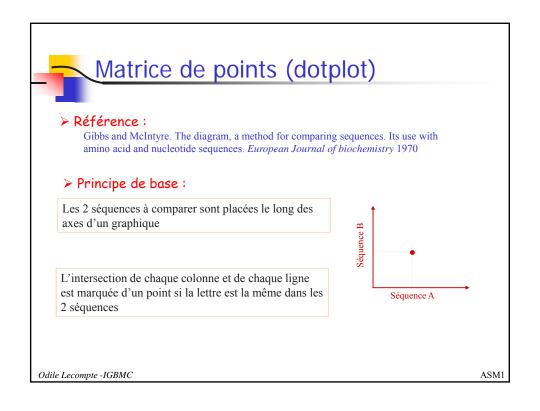
- 1) Pénalité fixe par gap
- 2) Pénalité variable selon la longueur du gap (affine)
 - P=x+y L avec L longueur du gap $x: p\acute{e}nalit\acute{e} d'ouverture de gap (gap opening penalty=GOP)$
 - y : pénalité d'extension de gap (gap extension penalty=GEP)
 - x >> y => favorise le fait d'avoir peu d'insertions (même longues)

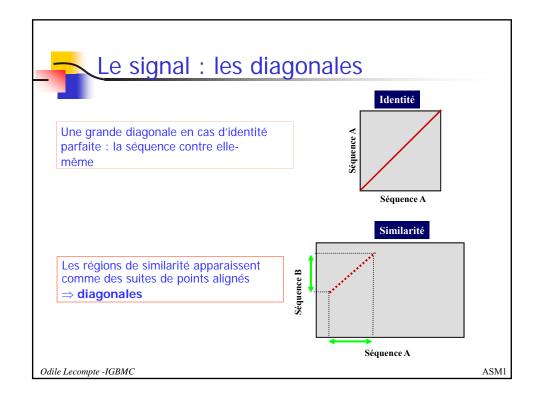
taccagttgcgggcggta

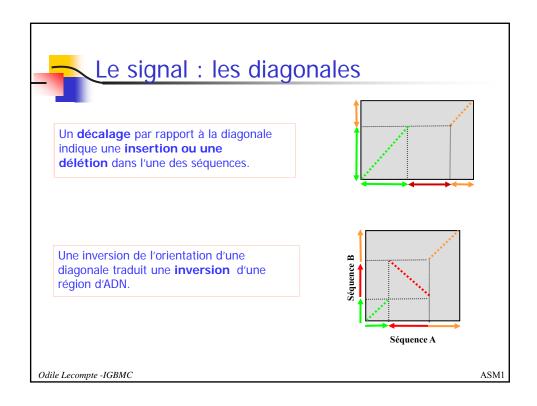
taccagttgcgggcggta
|||||||
taccagt---gggcggta

une insertion ou une délétion de plusieurs bases est plus probable que de nombreuses insertions ou délétions indépendantes d'une seule base.

Odile Lecompte -IGBMC

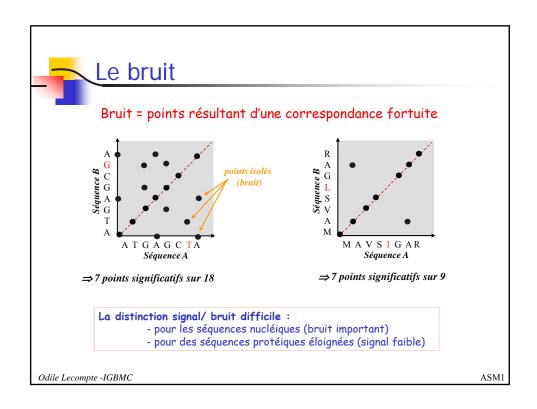

ASM1

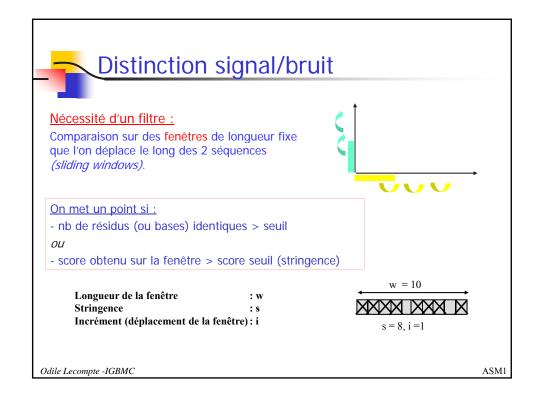


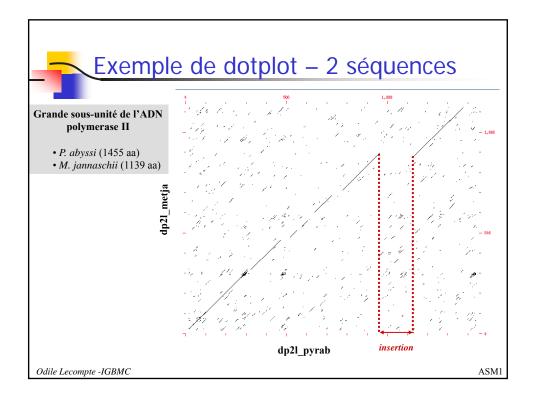

Comparaison de 2 séquences

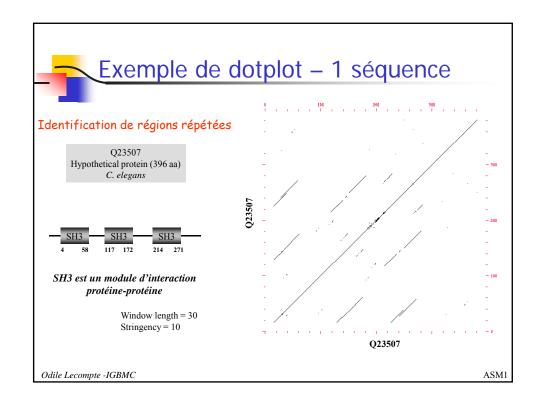
- Introduction :
 - notions de base
 - systèmes de scores (matrices de scores, pénalités de gaps)
- Comparaison par la matrice de points (dotplot)
- Alignements optimaux

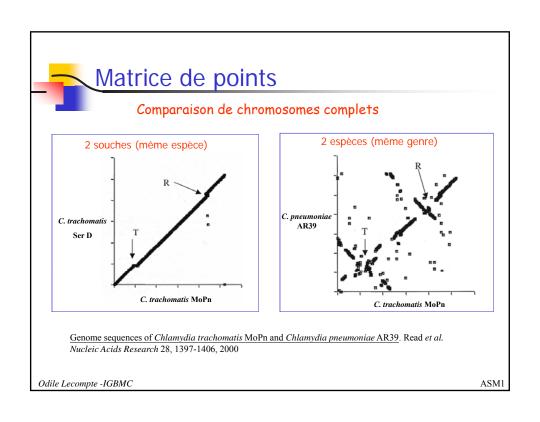
 $Odile\ Le compte\ \hbox{-} IGBMC$




Bruits = points résultant d'une correspondance fortuite (hasard)


avec n le nombre de lettres dans l'alphabet considéré


⇒ Pour les séquences nucléiques, le bruit sera très important


Odile Lecompte -IGBMC

La matrice de points (dotplot)

> Avantages :

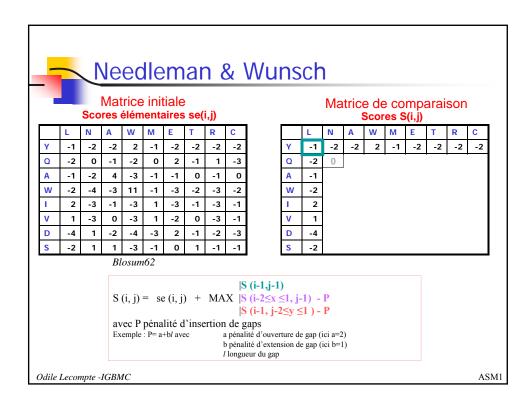
- vision globale de similarité entre 2 séquences
- toutes les zones de similarité sont visibles
- · détection rapide :
 - des insertions / délétions
 - des inversions
 - des régions répétées
 - des zones d'appariements potentiels de l'ARN

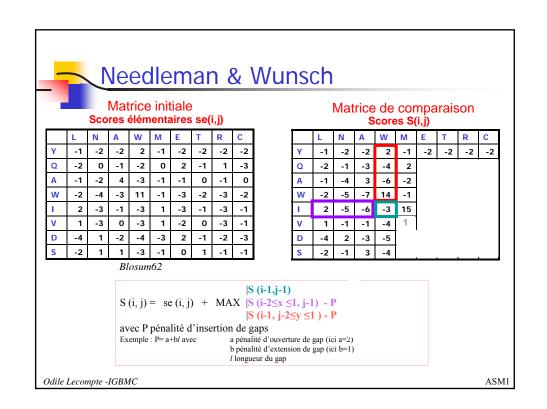
> Inconvénients :

- méthode visuelle
- · aucun alignement n'est fourni

Programmes: Dotter, GCG (Compare et Dotplot), MUMmer...

Odile Lecompte -IGBMC


ASM1



Comparaison de 2 séquences

- Introduction
- Comparaison par la matrice de points (dotplot)
- Alignements optimaux
 - Alignement global => Needleman et Wunsch Needleman and Wunsch. J. Mol. Biol. 488:443-453 (1970)
 - Alignement local => Smith & Waterman Smith and Waterman. J. Mol. Biol. 25:195-7 (1981)

Odile Lecompte -IGBMC

Needleman & Wunsch

Recherche du chemin de score maximum

départ

score max dans dernière ligne ou dernière colonne

chemin inverse (mémorisé à l'étape précédente)

Arrêt

première ligne et/ou première colonne

	ш	Ν	Α	W	M	Е	Т	R	С
Υ	\bigcirc	-2	-2	2	-1	-2	-2	-2	-2
Q	-2	\bigcirc	-3	-4	2	1	-3	-1	-5
Α	-1	-4	(7)	-6	-2	1	1	-3	-1
W	-2	-5	-7	14	-1	-4	-1	-2	-4
-	2	-5	-6	-3	15	8	9	6	7
V	1	-1	-1	-4	12	13	12	8	9
D	-4	2	-3	-5	7	(14)	12	10	6
S	-2	-1	3	-4	8	11	15	11	9

TRC

:

S--

Odile Lecompte -IGBMC

ASM1

Needleman & Wunsch

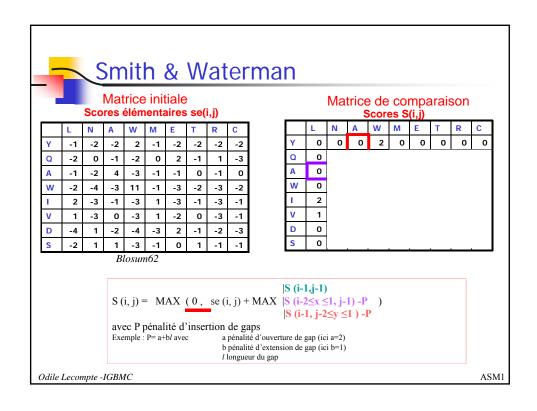
Scores identiques pour différents chemins

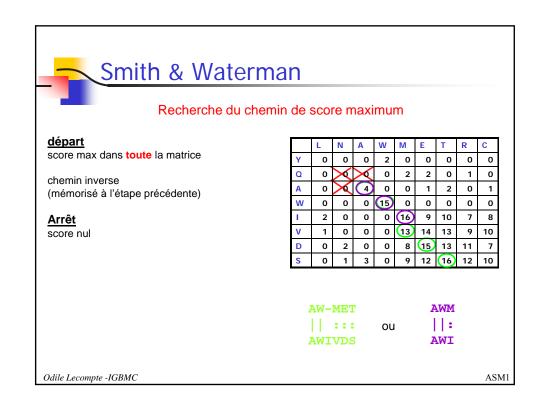
Il peut exister plusieurs chemins avec un même score, en particulier dans le cas de séquences nucléiques.

=> choix du chemin avec le minimum de gap généralement

Implémentation

ex : programme gap dans GCG, needle dans Emboss


Problèmes


la similarité peut concerner une partie seulement des séquences (ex: cas des protéines multidomaines)

Dans ce cas, l'alignement global risque de conduire à des erreurs.

 $Odile\ Le compte\ \hbox{-} IGBMC$

Implémentation

Comparaison de 2 séquences

Bestfit dans GCG, water dans emboss

Recherche de similarité dans une banque

Paralign http://dna.uio.no/search/ SSEARCH http://www.ddbj.nig.ac.jp/E-mail/homology.html) MPsrch

http://www.dna.affre.go.jp/htdocs/MPsrch/index_PP.html (Bioaccelerator de 1 'EMBL)

sw n, sw p http://eta.embl-heidelberg.de:8000/misc/

Problème

Smith & Waterman est considéré comme sensible mais long !!!

 $Odile\ Le compte\ \hbox{-} IGBMC$