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Mathematical notations

Set theory

1. Set union: A ∪B; set intersection: A ∩B; set difference: A \B.

2. Set inclusion: A ⊆ B; strict set inclusion: A ( B ≡ (A ⊆ B and A 6= B).

3. Addition of an element: A+ x = A ∪ {x}.

4. Deletion of an element: A− x = A \ {x}.

5. Cartesian product: A×B = {(a, b) | a ∈ A and b ∈ B}.

6.
(
X
k

)
denotes the collection of subsets of X on k elements.

7. [n] = {0, . . . , n− 1} denotes the set of the first n natural integers.

8. #A = |A| denotes the cardinality of A.

Logical operations

1. logical equivalence x ≡ x′.

2. negation: x ≡ ¬x.

3. and: x · y ≡ x ∧ y.

4. or: x+ y ≡ x ∨ y.

5. implication: x =⇒ y ≡ x+ y.

6. equivalence: x ⇐⇒ y ≡ x · y + x · y.

Asymptotics

Let f and g be two positive functions defined on integers.

1. f(n) = o(g(n)) if lim sup
n→∞

f(n)
g(n)

= 0.

2. f(n) = ω(g(n)) if lim inf
n→∞

f(n)
g(n)

=∞.
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3. f(n) = O(g(n)) if lim sup
n→∞

f(n)
g(n)

<∞.

4. f(n) = Ω(g(n)) if lim inf
n→∞

f(n)
g(n)

> 0.

5. f(n) = Θ(g(n)) if 0 < lim inf
n→∞

f(n)
g(n)
≤ lim sup

n→∞

f(n)
g(n)

<∞.

6. f(n) ∼ g(n) if lim
n→∞

f(n)
g(n)

= 1.

7. f(n) . g(n) if f(n) ≤ (1 + o(1))g(n), i.e. lim sup
n→∞

f(n)
g(n)
≤ 1.

Arithmetic

1. n mod p is the reminder of the Euclidian division of n by p.

2. d | n stands for d divides n, so n mod d = 0.

3. bxc is the rounding of x to the smaller integer.

4. dxe is the rounding of x to the bigger integer.

5. bxe is the rounding of x to the closest integer.

6. n! = 1× 2× . . .× n is the factorial of n.

7.
(
n
k

)
=

n!

k!(n− k)!
is the number of possible subsets of k elements among a set of n elements.

8.
(

n
a1,...,ak

)
=

n!
k∏
i=1

ai!

is the number of ordered partitions of a set of n elements into k parts, of

respective size a1, . . . , ak. This is a multinomial coefficient.

Probabilities

1. P [A] is the probability of the random event A.

2. E [X] =
∑
k∈N

k · P [X = k] is the expectancy of the (non negative) random variable X.

3. P [A | B] =
P [A ∩B]

P [B]
is the probability of the random event A conditioned on the random

event B.

4. E [X | A] =
∑
k∈N

k · P [X = k | A] is the expectancy of the random variable X conditioned on

the random event A.



Abstract

This thesis focuses on generalisations of the colouring problem in various classes of sparse graphs.
Triangle-free graphs of maximum degree d are known to have independence ratio at least (1 −
o(1)) ln d/d by a result of Shearer [108], and chromatic number at most O(d/ ln d) by a result of
Johansson [65], as d → ∞. This was recently improved by Molloy [90], who showed that the
chromatic number of triangle-free graphs of maximum degree d is at most (1 + o(1))d/ ln d as
d→∞.

While Molloy’s result is expressed with a global parameter, the maximum degree of the graph,
we first show that it is possible to extend it to local colourings. Those are list colourings where
the size of the list associated to a given vertex depends only on the degree of that vertex. With
a different method relying on the properties of the hard-core distribution on the independent sets
of a graph, we obtain a similar result for local fractional colourings, with weaker assumptions. We
also provide an analogous result concerning local fractional colourings of graphs where each vertex
is contained in a bounded number of triangles, and a sharp bound for the occupancy fraction —
the expected size of an independent set — of those graphs. In another direction, we also consider
graphs of girth 7, and prove related results which improve on the previously known bounds when
the maximum degree does not exceed 107. Finally, for d-regular graphs with d ∈ {3, 4, 5}, of girth
g varying between 6 and 12, we provide new lower bounds on the independence ratio.

The second chapter is dedicated to distance colourings of graphs, a generalisation of strong edge-
colourings. Extending the theme of the first chapter, we investigate minimal sparsity conditions
in order to obtain Johansson-like results for distance colourings. While Johansson’s result follows
from the exclusion of triangles — or actually of cycles of any fixed length — we show that excluding
cycles of even length `, provided that ` ≥ 2t + 2, has a similar effect for the distance-t chromatic
number and the distance-(t+ 1) chromatic index. When t is odd, the same holds for the distance-t
chromatic number by excluding cycles of odd length `, provided that ` ≥ 3t. We investigate the
asymptotic sharpness of our results with constructions of combinatorial, algebraic, and probabilistic
natures.

In the third chapter, we are interested in the bipartite induced density of triangle-free graphs,
a parameter which conceptually lies between the independence ratio and the fractional chromatic
number. Motivated by a conjecture of Esperet, Kang, and Thomassé [49], which states that
the bipartite induced density of a triangle-free graph of average degree d should be Ω(ln d), we
prove that the conjecture holds when d is large enough in terms of the number of vertices n,

namely d = Ω
(√

n lnn
)

. Our result is shown to be sharp up to a multiplicative constant, with

a construction relying on the triangle-free process. Our work on the bipartite induced density
raises an interesting related problem, which aims at determining the maximum possible fractional
chromatic number of sparse graphs where the only known parameter is the number of vertices. We
prove non-trivial upper bounds for triangle-free graphs, and graphs where each vertex belongs to
a bounded number of triangles.
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viii ABSTRACT

The entirety of this thesis is linked to the off-diagonal Ramsey numbers. To this date, the best-
known bounds on the off-diagonal Ramsey number R(3, t) come from the aforementioned result
of Shearer for the upper bound, and a recent analysis of the triangle-free process [16, 52] for the
lower bound, giving

t2

4 ln t
. R(3, t) .

t2

ln t
. (∗)

Many of our results are best possible barring an improvement of (∗), which would be a breakthrough
in quantitative Ramsey theory.



Abstract in French

Cette thèse étudie principalement le problème de coloration dans diverses classes de graphes épars.
Un résultat de Shearer [108] indique que le ratio d’indépendance des graphes sans triangle de degré
maximal d est au moins (1−o(1)) ln d/d, et fut suivi 13 ans plus tard par un résultat de Johansson
[65] qui démontre que le nombre chromatique de ces graphes est au plus O (d/ ln d) quand d→∞.
Ce dernier résultat fut récemment amélioré par Molloy [90], qui montra que le nombre chromatique
des graphes sans triangle de degré maximal d est au plus (1 + o(1))d/ ln d quand d→∞.

Tandis que le résultat de Molloy s’exprime à l’aide d’un paramètre global, le degré maximal
du graphe, nous montrons en premier lieu qu’il est possible de l’étendre à la coloration locale.
Il s’agit de la coloration par liste, où la taille de la liste associée à chaque sommet ne dépend
que de son degré. Avec une méthode différente se basant sur les propriétés de la distribution
hard-core sur les ensembles indépendants d’un graphe, nous obtenons un résultat similaire pour
la coloration fractionnaire locale, avec des hypothèses plus faibles. Nous démontrons également
un résultat analogue concernant la coloration fractionnaire locale des graphes où chaque sommet
est contenu dans un nombre borné de triangles, et une borne principalement optimale sur le taux
d’occupation — l’espérance de la taille des ensembles indépendants — de ces graphes. Dans une
autre direction, nous considérons également les graphes de maille 7, et prouvons des résultats
similaires qui améliorent les bornes précédemment connues quand le degré maximal du graphe est
au plus 107. Finalement, pour les graphes d-réguliers où d ∈ {3, 4, 5}, de maille g variant entre 6
et 12, nous démontrons de nouvelles bornes inférieures sur le ratio d’indépendance.

Le second chapitre est dédié à la coloration à distance t d’un graphe, qui généralise la notion de
coloration forte des arêtes. Nous étendons le thème du premier chapitre en étudiant des conditions
éparses minimales permettant d’obtenir des résultats de la même nature que celui de Johansson
pour la coloration à distance t. Tandis que le résultat de Johansson s’obtient par exclusion des
triangles — et en fait des cycles de n’importe quelle taille préalablement fixée — nous montrons
que l’exclusion des cycles de taille `, pour n’importe quel ` ≥ 2t + 2 pair, a un effet similaire sur
le nombre chromatique à distance t, et sur l’indice chromatique à distance t+ 1. En outre, quand
t est impair, une conclusion similaire peut se faire pour le nombre chromatique à distance t par
l’exclusion des cycles de taille impaire ` ≥ 3t fixée. Nous étudions l’optimalité asymptotique de
ces résultats à l’aide de constructions de nature combinatoire, algébrique, et probabiliste.

Dans le troisième chapitre, nous nous intéressons à la densité bipartie induite des graphes sans
triangle, un paramètre dont la difficulté se trouve conceptuellement quelque part entre celle du
ratio d’indépendance et celle du nombre chromatique fractionnaire. Motivés par une conjecture
de Esperet, Kang, et Thomassé [49], qui prétend que la densité bipartie induite des graphes sans
triangle de degré moyen d devrait être Ω(ln d), nous montrons que cette conjecture est vraie quand

d est suffisamment grand en termes du nombre de sommets n, à savoir d = Ω
(√

n lnn
)

. Ce résultat

ne pourrait être amélioré que par une valeur de l’ordre lnn, ce que nous montrons à l’aide d’une
construction reposant sur le processus sans triangle. Nos travaux sur la densité bipartie induite
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x ABSTRACT IN FRENCH

soulèvent un problème associé intéressant, celui de déterminer le nombre chromatique fractionnaire
maximal sur une classe de graphes épars dont seul le nombre de sommets est connu. Nous prouvons
des bornes supérieures non triviales pour les graphes sans triangle, et pour les graphes dont chaque
sommet appartient à un nombre borné de triangles.

L’intégralité de cette thèse est fortement reliée aux nombres de Ramsey. À ce jour, le meilleur
encadrement connu sur le nombre de Ramsey R(3, t) nous est donné par le sus-mentionné résultat
de Shearer pour la borne supérieure, et par une analyse récente du processus sans triangle [16, 52]
pour la borne inférieure, ce qui donne

t2

4 ln t
. R(3, t) .

t2

ln t
. (∗)

Beaucoup de nos résultats ne pourraient être améliorés à moins d’améliorer par la même occasion
(∗), ce qui constituerait une révolution dans la théorie de Ramsey quantitative.



Abstract in Dutch

Dit proefschrift gaat over generalisaties van het kleuringprobleem in verscheidene klassen van
grafen met lage dichtheid.

Driehoekvrije grafen met begrensde maximale graad ∆ vormen een belangrijke klasse van zulke
grafen. Vanwege een resultaat van Shearer [108] hebben zij onafhankelijkheidsratio ten minste
(1 − o(1)) ln ∆/∆. Bovendien is het kleuringsgetal van deze grafen ten hoogste O(∆/ ln ∆), voor
∆→∞, vanwege een stelling van Johansson [65] die recent is verbeterd door Molloy [90]. Molloy
heeft aangetoond dat het kleuringsgetal van driehoekvrije grafen met maximum graad ∆ ten
hoogste (1 + o(1))∆/ ln ∆ is, voor ∆→∞.

Het resultaat van Molloy is uitgedrukt in termen van een globale parameter: de maximale
graad. Het is echter mogelijk om zijn stelling te generaliseren naar een bepaald soort lokale
kleuringen, namelijk lijstkleuringen waarbij de grootte van de lijst geassocieerd met een gegeven
knoop alleen afhangt van de graad van die knoop. Met behulp van een andere methode en onder
zwakkere aannames verkrijgen we vergelijkbare resultaten voor lokale fractionele kleuringen. Deze
andere methode is gebaseerd op de eigenschappen van de hard-core verdeling op onafhankelijke
verzamelingen van een graaf. We geven ook een analoog resultaat betreffende lokale fractionele
kleuringen van grafen waarin elke knoop is bevat in een begrensd aantal driehoeken, alsmede een
scherpe grens op de verwachte grootte van een onafhankelijke verzameling in zulke grafen. In het
bijzonder beschouwen we grafen met kleine maximale graad waarin de kleinste cykel ten minste
lengte 7 heeft. Zulke grafen onderwerpen we aan een meer gedetailleerde analyse: we verbeteren de
voorheen beste bekende grenzen, onder voorwaarde dat de maximum graad niet meer dan 107 is.
Ten slotte verkrijgen we nieuwe ondergrenzen op de onafhankelijkheidsratio van d-reguliere grafen
waarvoor d ∈ {3, 4, 5} en de kortste cykellengte g tussen 6 en 12 ligt.

Het tweede hoofdstuk is gewijd aan afstandskleuringen van grafen, een veralgemening van sterke
tak-kleuringen. Als voortzetting op het thema van het eerste hoofdstuk onderzoeken we minimale
dichtheidscriteria die leiden tot Johansson-achtige resultaten voor afstandskleuringen. Johanssons
stelling gaat over het verbieden van driehoeken – of eigenlijk cykels van elke gegeven lengte. Wij
laten echter zien dat het verbieden van cykels met even lengte `, met ` ≥ 2t + 2, een zelfde effect
heeft op het afstand-t kleuringsgetal en de afstand-t kleuringsindex. Indien t oneven is dan geldt
het zelfde voor het afstand-t kleuringsgetal van grafen zonder cykel van oneven lengte ` ≥ 3t. We
onderzoeken de scherpheid van onze resultaten aan de hand van combinatorische, algebräısche en
probabilistische constructies.

In het derde hoofdstuk zijn we gëınteresseerd in de bipartiete gëınduceerde dichtheid van
driehoekvrije grafen. Deze parameter ligt tussen de onafhankelijkheidsratio en het fractionele
kleuringsgetal. We zijn gemotiveerd door een vermoeden van Esperet, Kang, and Thomassé [49],
volgens welke de bipartiete gëınduceerde dichtheid van een driehoekvrije graaf met gemiddelde
graad d van orde Ω(ln d) zou moeten zijn. We bewijzen dat dit vermoeden waar is voor d groot ge-

noeg, namelijk voor d = Ω
(√

n lnn
)

. Ons resultaat is scherp op een multiplicatieve constante na,

xi



xii ABSTRACT IN DUTCH

hetgeen we hebben aangetoond met een probabilistische constructie gebaseerd op het zogenaamde
driehoekvrije proces. Ons werk aan de bipartiete gëınduceerde dichtheid leidt tot een ander in-
teressant probleem, waarin het doel is om het fractionele kleurgetal van boven te begrenzen in
termen van enkel het aantal knopen van de graaf. We bewijzen niet-triviale bovengrenzen voor
driehoekvrije grafen en, algemener, voor grafen waarin iedere knoop onderdeel is van slechts een
begrensd aantal driehoeken.

Dit gehele proefschrift is nauw gerelateerd aan de buitendiagonale Ramseygetallen R(3, t). Tot
op heden worden de beste bekende bovengrenzen voor R(3, t) gegeven door het eerdergenoemde
resultaat van Shearer. De beste bekende ondergrenzen zijn afkomstig van een recente analyse van
het driehoekvrije proces [16, 52]. Samen geeft dit

t2

4 ln t
. R(3, t) .

t2

ln t
. (∗)

Veel van onze resultaten zijn best mogelijk, modulo een hypothetische verbetering van (∗),
hetgeen een doorbraak in quantitatieve Ramseytheorie zou betekenen.



Summary

Graph colouring

In 1852, the young student Francis Guthrie noticed while trying to colour the map of counties of
England that he could do it with only 4 colours, all the while respecting the rule that two counties
sharing a border should have different colours — we call this a proper colouring. He wondered
if this could be done with any map one could imagine, and proposed this problem to Augustus
DeMorgan through his brother, one of his students at University College London. The problem
rapidly aroused the curiosity of many mathematicians, until Alfred Kempe proposed a proof of
the 4-colour theorem in 1879, followed by another proof by Peter Guthrie Tait in 1880. However,
both proofs turned out to be false after 11 years each. It took more than a century before a valid
proof of the 4-colour theorem was proposed by Kenneth Appel and Wolfgang Haken in 1976, who
used a framework which had been developed during the previous decade known as the discharging
method. This did not however settle the 4-colour theorem in the mind of everyone; their proof relies
on a computer program, which would check thousand of small statements. It is so long that it is
inconceivable to complete it by hand. To this date, the proof has known several simplifications,
but a human-checkable proof has yet to be found.

The 4-colour theorem has been a challenge for mathematicians, but this is only one problem in
a much larger framework, graph colouring. A graph consists of an abstract set of vertices, together
with a set of edges which connect some pairs of those vertices. The graph corresponding to a given
map would have a vertex representing each region, and there would be an edge connecting every
two regions sharing a border. In such a graph, the edges do not cross themselves; we say that the
graph is planar. While it is possible to properly colour planar graphs with only 4 colours, this is
not the case for every graphs. Finding a proper colouring of a given graph with as few colours as
possible is known as the colouring problem, and the number of colours in such an optimal proper
colouring is called the chromatic number of the graph. The colouring problem has an impressive
range of applications in many branches of science, not only mathematics. The efficiency of a
computer processor, the number of tracks needed in a railway station, the number of frequencies
that our smartphones should be able to capture, all those seemingly unrelated topics depend on a
colouring problem.

The main issue with the colouring problem is that it is NP-hard to solve, or even to approach
with a non optimal solution. This implies that it is highly unlikely that we will ever be able to
come up with an efficient way of finding an optimal colouring of any given graph. If we assume that
P 6= NP, as it is widely believed in the mathematical community, such a goal is even impossible
to achieve. For this reason, a large proportion of research in graph colouring is devoted to finding
large classes of graphs for which either the colouring problem is easier, or the chromatic number
is significantly lower. This is the case of sparse graphs, graphs with few edges.

xiii
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Sparse graphs and random colourings

A sparse graph is a graph with few edges, either globally speaking, or at a local level. The most
notorious class of sparse graphs is the one of triangle-free graphs, that is graphs where no triplet
of vertices are pairwise connected. One could also think of graphs of large girth (graphs which do
not contain a small cycle), graphs of bounded clique number (no more than a bounded number of
vertices can be all pairwise connected), graphs of small average degree (each vertex is incident with
a small average number of edges), graphs with few triangles, and many more. Sparse graphs share
the property than they can be properly coloured with significantly fewer colours than what could
be expected in general. The most general upper bound which holds for the chromatic number of a
graph depends on its maximum degree. Indeed, a graph with maximum degree ∆ can be coloured
using a greedy algorithm with never more than ∆ + 1 colours.

This first bound can be reduced by 1 for almost every graph; the only exceptions are complete
graphs and odd cycles. This is known as Brook’s theorem. This improved bound is still far from
capturing the general behaviour of a graph with maximum degree ∆, since most of them can
actually be coloured with (1 + o(1))∆/(2 ln ∆) colours as ∆→∞. Indeed, this holds for binomial
random graphs with probability tending to 1 as the number of vertices grows to infinity. So, given
any graph of maximum degree ∆, it is most likely possible to colour it with (1 + o(1))∆/(2 ln ∆)
colours; however we have no characterisation of the graphs which do not have this property. What
we do know is that triangle-free graphs are not much harder to colour in general than random
graphs. A first hint of this fact was provided by Shearer in 1983 [108], improving on [3]; he proved
that the independence ratio of triangle-free graphs of average degree d is at least (1+o(1)) ln d/d as
d→∞. The extension of this result to the chromatic number of triangle-free graphs of maximum
degree ∆ was proved by Johansson in 1996 [65] up to some multiplicative constant, and recently
Molloy [90] improved this upper bound to (1 + o(1))∆/ ln ∆, as ∆→∞. This fact on triangle-free
graphs is central in this thesis. We will see on several aspects how the random graphs provide
insights on the behaviour of triangle-free graphs, and of other classes of sparse graphs. This comes
mainly from the fact that random processes tend to be as efficient on triangle-free graphs as on
random graphs, for the emptiness of the neighbourhoods ensures a sufficient relative independence
between the different random events at play. Indeed, the proofs of Johansson and Molloy both
rely on random colouring procedures.

Hard-core distribution

During the first chapter, we make a great use of the hard-core distribution in order to derive
our results. This distribution is widely studied in statistical physics, and it turns out that its
special properties are particularly useful in the context of graph colouring when it is applied on
the independent sets of a graph. Writing I(G) for the collection of independent sets of a given
graph G, a random independent set I drawn according to the hard-core distribution at fugacity λ
on I(G) satisfies that, for every independent set I ∈ I(G),

Pr[I = I] =
λ|I|

Zλ(G)
, where Zλ(G) =

∑
I∈I(G)

λ|I|

is a normalising factor, called the independence polynomial of G.

The hard-core distribution has a very useful spatial Markov property. This informally means
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that the hard-core distribution behaves independently from the outside at a local level. More
formally, given any subset of vertices X, if we condition on the fact that I \ X = J , for any
possible realisation J of I \X, then the variable I∩X follows a hard-core distribution at fugacity
λ on the independent sets of G[X \N(J)]. A consequence of this property is that it is possible to
analyse an independent set I drawn according to the hard-core distribution at a local level. Such
a local analysis [34] demonstrates that E [|I|] ≥ (1− ε)n ln d/d on any n-vertex triangle-free graph
of maximum degree d large enough, by fixing λ = 1/ ln d � 1. This implies that the average size
of an independent set in such a graph is at least (1− ε)n ln d/d.

Throughout Chapter 1, we show how the hard-core distribution can be used in order to derive
similar results for fractional colourings. To this end, we extend a greedy fractional colouring
algorithm first introduced in a book by Molloy and Reed [93], which relies on an input probability
distribution on the independent sets of a graph. The algorithm constructs a fractional colouring
of a given graph G which relies on a weighting function ŵ : I(G)→ [0, 1] on the independent sets
of G, such that every vertex belongs to independent sets of total weight at least 1. We write ŵ(G)
for the sum of the weights of all the independent sets of G. It is then possible to assign to every
independent set I a measurable subset w(I) of the interval [0, ŵ(G)], of measure µ(w(I)) = ŵ(I);
this assignment is what we call the fractional colouring of G of weight ŵ(G). The algorithm works
as follows: at each step, it increases the weight of every independent set of the graph by a value
proportional to its probability in the input probability distribution, in such a way that the weight
induced on every vertex is at most 1, and is exactly 1 for some vertices. It then repeats this
operation on the graph obtained after removing the vertices on which the induced weight is 1,
until reaching the empty graph, which means that every vertex has been entirely coloured.

This algorithm lets us extend the local occupancy of the probability distribution into a frac-
tional colouring. Namely, if in any induced subgraph H of a given graph G, for every vertex v
and a random independent set IH drawn according to the input probability distribution on the
independent sets of H, it holds that

r∑
i=0

αi(v)E
[∣∣IH ∩N i

H(v)
∣∣] ≥ 1, (1)

for a well-chosen set of parameters (αi(v))ri=0, then there is a fractional colouring of G where every
vertex v is coloured with a measurable subset of the interval

[
0,
∑r

i=0 αi(v) |N i
G(v)|

]
. Fix ε > 0. If

G is a graph of maximum degree d, the greedy fractional colouring algorithm with the hard-core
distribution at fugacity λ produces a fractional colouring of G of weight at most

(i) (1 + ε)d/ ln d if G is triangle-free by fixing λ = ε/2, provided that d ≥ gε for some dε which
depends only on ε;

(ii) (1 + ε)d/ ln(d/
√
T ) if every vertex of G is contained in at most T ≥ 1 triangles, by fixing

λ = min{ε, 1/
√
T}, provided that d ≥ dε

√
T for some dε which depends only on ε;

(iii) min
k∈Z≥4

(
2d+ 2k−3 + k

)/
k if G is of girth at least 7, by fixing λ = 4 and restricting the hard-core

distribution to maximal independent sets of G.

We also prove the counterparts of (i) and (ii) for the occupancy fraction of G, that is the expected
size of an independent set of G. These are mainly sharp, as illustrated by random constructions.

In order to obtain the above fractional colouring results on a graph G, we need that every
induced subgraph of G satisfies (1). For this reason, increasing the depth r cannot improve our
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results with this method, since all the constraints present at depth r′ < r would also be present at
depth r, and thus increasing the girth of the class of graphs considered does not yield better bounds
in this setting. However, it is possible to use a similar method without the need to consider induced
subgraphs, in order to derive lower bounds on the independence ratio of graphs. Now, using the
hard-core distribution with λ = ∞, that is the uniform distribution on maximum independent
sets, we are able to improve the lower bounds for the independence ratio of d-regular graph with
d ∈ {3, 4, 5}, of girth g varying between 6 and 12.

d
g

6 7 8 9 10 11 12

3 30/11 ≈ 2.727272 30/11 2.625224 2.604167 2.557176 2.539132 2.510378
4 41/13 ≈ 3.153846 41/13 3.038497 3.017382 3
5 69/19 ≈ 3.631579 3.6 3.5

Table 1: Upper bounds on the inverse of the independence ratio.

Local colourings

The results of Johansson and Molloy actually hold for a stronger form of the colouring problem,
the list colouring problem. In this setting, each vertex has a private list of available colours which
it may be coloured with. The colouring problem is a special case of the list colouring problem, but
in general a proper list colouring may require lists of size much more than the chromatic number
of a given graph. The minimum size of the lists always ensuring the existence of a proper list
colouring is called the choosability of the graph. For instance, bipartite graphs of minimum degree
d have choosability at least (1− o(1)) ln d.

In most real-life applications of list colourings, the choosability of the graph corresponds to the
number of resources that must be available for each vertex of the graph in order to ensure that they
can all be coloured. In the setting of list colourings, all vertices are treated equally, even though
the graph may be highly asymmetric, and some of its vertices more constrained than the others.
Now, what if we wish to assign lists of different sizes to the vertices, which depend on the level
of constraints of each vertex? This kind of question was first considered in one of the originating
papers for list colouring [41], where there is a characterisation of degree-choosable graphs, graphs
which can be properly L-coloured for any list assignment L such that |L(v)| = deg(v) for every
vertex v. The graphs which are not degree-choosable are exactly the Gallai forests, graphs where
every block is either a clique or an odd cycle.

In the first chapter of this thesis, we are interested in local colourings. A local list colouring is
a proper list colouring from any list assignment which satisfies the property that the list assigned
to a given vertex should have a size which depends only on the local properties of that vertex.
We first prove a generalisation of Molloy’s result to local list colourings. Given any ε > 0, every
triangle-free graph G of maximum degree ∆ can be properly L-coloured from any list assignment
L where |L(v)| = (1+ε)d/ ln d for every vertex v of degree d ≥ dε = (72 ln ∆)2/ε. Vertices of degree
d ≤ dε should be assigned a list of size min{(1+ε)dε/ ln dε, d+1}. We actually prove this statement
for DP-colourings, a generalisation of list colourings. We additionally provide a construction of
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a bipartite graph where this special treatment of vertices of small degree is necessary in order to
find a local list colouring, where the value of dε is indeed necessarily increasing with that of ∆.

We also consider local fractional colourings, which are fractional colourings c satisfying that
the colours assigned to every vertex v is a measurable subset of the interval [0, γ(v)], where γ(v)
depends only on the local properties of v, namely its degree and the density of its neighbourhood.
All the results stated in the previous paragraph on fractional colouring also hold in the local setting.
While the fractional chromatic number equals the fractional choosability of any given graph, it is
not clear whether the existence of a local fractional colouring would ensure the existence of a local
fractional list colouring for any list assignment of corresponding measure.

Distance colouring

The strong chromatic index of a graph is the smallest size of a partition of its edges into induced
matchings — we call such a partition a strong edge-colouring. The strong chromatic index of a
graph G can be equivalently defined as the chromatic number of L(G)2, the square of the line graph
of G. One possible application of strong edge-colourings lies in the channel allocation schemes of
wireless networks. In 1985, Erdős and Nešetřil asked for the maximum value of the strong chromatic
index of any graph of maximum degree ∆. They conjecture that this is 5/4 ·∆2, reached by the
blown-up 5-cycle, and in particular asked whether it is possible to obtain an upper bound of the
form (2−ε)∆2 for some ε > 0, which would improve the trivial upper bound of 2∆2 corresponding
to the maximum degree of the square of the line graph. This latter question was first answered in
the affirmative by Molloy and Reed [91] in 1997, who showed that 1.998∆2 is a valid upper bound,
provided that ∆ is large enough. They obtained this result by showing that the square of a line
graph is relatively sparse, namely the number of edges in any of its neighbourhoods is no more
than (1− δ)

(
2∆2

2

)
, and they prove it with δ = 1/36. A graph with such a sparsity condition can be

coloured with a reduced number of colours through a random procedure. Their method has since
been improved; notably the sparsity result has been improved up to asymptotic optimality with
δ = 1/4 + o(1) as ∆ → ∞ [25]. To this date, the best known general upper bound is 1.835∆2,
provided that ∆ is large enough [20]. On the other hand, a Johansson-like result due to Mahdian
[87] states that the strong chromatic index of graphs of maximum degree ∆ with excluded C4 is
at most (2 + ε)∆2/ ln ∆, for any ε > 0, provided that ∆ is large enough.

It is possible to generalise the notion of strong chromatic index to distance-t chromatic index of
a graph G, which is the chromatic number of L(G)t, the t-th power of the line graph of G. Likewise,
we define the distance-t chromatic number as the chromatic number of Gt, the t-th power of the
graph G. In Chapter 2, we analyse the framework of distance colourings, and in particular seek for
a generalisation of the result of Mahdian to any distance t. As a direct application of the sparse
graphs colouring results discussed in Chapter 1, we are able to demonstrate that the distance-t
chromatic index of C2k-free graphs of maximum degree ∆, for any k ≥ t, is at most (8+ε)∆t/ ln ∆,
provided that ∆ is large enough as a function of t and ε. When t ∈ {2, 3, 4, 6}, there exist bipartite
graphs of maximum degree ∆, girth 2t, and distance-t chromatic index (1−o(1))∆t as ∆→∞, for
infinitely many values of ∆. Those are the incidence graphs of projective geometries. Concerning
distance-t vertex-colourings, we show that the distance-t chromatic number of a C`-free graph of
maximum degree ∆, for any even ` ≥ 2t+ 2, or any odd ` ≥ 3t provided that t is odd, is at most
(4 + ε)∆t/ ln ∆, for any ε > 0, provided that ∆ is large enough as a function of t and ε. When
t ≥ 11, we provide constructions of even maximum degree ∆, girth 8, and distance-t chromatic
number (∆/2)t. Moreover, these constructions are bipartite if t is even. When t is odd, we provide
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constructions of maximum degree ∆, odd-girth 3t, and distance-t chromatic number (∆/3)t. All
the Johansson-like results in this chapter are sharp up to a multiplicative constant because of
random graphs.

Bipartite induced density

The bipartite induced density bid(G) of a graph G is defined as the maximum average degree of a
bipartite induced subgraph of G. This parameter was introduced by Esperet, Kang, Thomassé in
the study of separation choosability [49]. They conjectured that the bipartite induced density of
a triangle-free graph of average degree d should be at least C ln d for some constant C > 0. The
conjecture remains open in its general formulation, but a marginally weaker lower bound of the
form Cr ln d/ ln ln d has been shown to hold for the bipartite induced density of Kr-free graphs, for
any fixed r ≥ 3 [83].

Finding an induced bipartite subgraph of a given graph G consists in finding two independent
sets of G, not necessarily disjoint. In addition, it is required that the subgraph induced by two
two independent sets is as dense as possible; for this reason one can think of the problem of
determining the bipartite induced density of a graph as conceptually harder than that of computing
the independence ratio. On the other hand, we show that the two independent sets inducing the
densest bipartite subgraph among the independent sets used in a fractional colouring of weight k of
a graph G of average degree d certify that the bipartite induced density of G is at least d/k. So the
bipartite induced density problem is conceptually easier to analyse than the fractional colouring
problem. In particular, the fractional colouring counterpart of the conjecture on the bipartite
induced density is harder to solve — its statement is that any triangle-free graph of maximum
average degree d has fractional chromatic number at most Cd/ ln d, for some absolute constant C;
this was posed by Harris [59].

We prove the bipartite induced density conjecture when d is sufficiently large in terms of the

number of vertices n of the graph, namely d = Ω
(√

n lnn
)

. Actually, in this regime, the bipartite

induced density of triangle-free graphs is always at least d2/n = Ω(ln d), and we demonstrate that
this is sharp up to a O(lnn) factor, by a pseudo-random construction. Solving the conjecture
in this setting reduces to a nice fractional colouring problem, that of determining the maximum
possible fractional chromatic number of a triangle-free graph on n vertices. We demonstrate that
this is at most (2 + o(1))

√
n/ lnn as n → ∞, and once again random graphs provide the best

known lower bound for this question. The triangle-free process constructs a triangle-free graph
on a given number n of vertices by drawing every possible pair of vertices in a random order,
and adding such a pair as an edge to the graph under the condition that it does not create a
triangle. The random graph obtained by the triangle-free process is a maximal triangle-free graph.
With high probability, it is of maximum degree (1 + o(1))

√
n lnn/2; its independence number is

(1+o(1))
√

2n lnn, and its fractional chromatic number is (1/
√

2−o(1))
√
n/ lnn, as n→∞. This

demonstrates that our result is sharp up to a 2
√

2 asymptotic factor.

Close links to off-diagonal Ramsey numbers

It is always possible to find regular structures in large enough graphs. A formalisation of this
conceptual statement was shown by Ramsey in 1930 [103]; Ramsey’s theorem states that given
any integers s and t, there exists an integer R(s, t) called the Ramsey number such that any
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graph on at least R(s, t) vertices contains either a clique of size s or an independent set of size
t, while there are graphs on R(s, t) − 1 vertices avoiding both. This theorem is fundamental in
combinatorics, and led to the emergence of Ramsey theory, which captures many problems that
search for various kinds of structural properties in large graphs.

Determining the exact value of R(s, t) is a notorious problem; there is still a multiplicative
factor of 4 between the best known lower and upper bounds of the logarithm of the diagonal
Ramsey number lnR(s, s). There is no known explicit construction of graphs demonstrating an
exponential lower bound on R(s, s); only random graphs certify that it has an exponential growth
in our current knowledge. Particular attention has been paid to off-diagonal Ramsey numbers
R(s, t) where s is fixed and t grows. The value of R(3, t) is directly related to the independence
ratio of triangle-free graphs, so its best estimations provide a standard for the sharpness of many
of our results in this thesis. By a direct application of Shearer’s result on the independence ratio
of triangle-free graphs, and a recent analysis of the triangle-free process [16, 52], we know that

t2

4 ln t
. R(3, t) .

t2

ln t
. (∗)

The whole content of this thesis is linked to the off-diagonal Ramsey numbers. It extends the
study of off-diagonal Ramsey numbers in many directions, by excluding cycles rather than cliques,
by bounding the number of triangles rather than excluding them, and by adding information on the
independent sets, both qualitative (a colouring covers all the vertices of the graph with independent
sets) and quantitative (we sometimes have information on the average size of independent sets).
Many of these extensions are best possible barring an improvement of (∗), which would be a
breakthrough in Ramsey theory.





Résumé substantiel en français

Coloration de graphes

En 1852, alors qu’il était encore étudiant, Francis Guthrie remarqua qu’il était possible de colorier
les comtés anglais avec seulement 4 couleurs différentes, tout en s’assurant de suivre la règle
élémentaire que deux comtés ayant une frontière commune doivent être coloriés avec deux couleurs
différentes — c’est ce que l’on appelle une coloration propre. Il se demanda alors si cela pouvait
se faire avec n’importe quelle carte concevable. Il proposa ce problème à Augustus DeMorgan par
l’intermédiaire de son frère, qui était un de ses étudiants à l’University College de Londres. Le
problème attira rapidement l’attention de bon nombre de mathématiciens, jusqu’à ce qu’Alfred
Kempe propose une preuve du théorème des 4 couleurs en 1879, suivi d’une autre preuve par
Peter Guthrie Tait l’année suivante. Toutefois, les deux preuves finirent par se révéler fausses,
après avoir résisté à toute forme de contradiction pendant 11 ans chacune. Il fallut plus d’un
siècle avant qu’une preuve valide du théorème des 4 couleurs ne fût proposée par Kennet Appel et
Wolfgang Haken en 1976, qui usèrent d’une méthode développée pendant la décennie précédente,
désormais bien connue sous le nom de méthode de déchargement. Leur preuve ne fit cependant
pas l’unanimité au sein de la communauté mathématique, notamment car elle reposait sur un
programme informatique, qui vérifiait la validité de plusieurs milliers de résultats intermédiaires.
Cette preuve est si longue qu’il n’est pas concevable de l’écrire à la main, ni même de la lire dans
son entièreté. À ce jour, de nombreuses simplifications y ont été apportées, mais aucune preuve
humainement accessible n’a encore été trouvée, malgré une recherche encore active.

Le théorème des 4 couleurs fut un défi remarquable pour les mathématiciens, et pourtant il ne
s’agit que d’un problème isolé au sein d’une très riche famille de problèmes liés à la coloration de
graphes. Un graphe est représenté par deux ensembles abstraits ; le premier contient ses sommets,
et le second regroupe un certain nombre d’arêtes, qui relient chacune une paire de sommets. Le
graphe associé à une carte représente chaque région par un sommet, et contient une arête entre
chaque paire de sommets représentant deux régions avec une frontière commune. Il est possible de
dessiner un tel graphe de sorte que ses arêtes ne se croisent pas ; on dit que le graphe est planaire.
Tandis qu’il est possible de colorier proprement n’importe quel graphe planaire avec seulement 4
couleurs, c’est loin d’être le cas pour tous les graphes. Le problème de coloration consiste alors
à déterminer le nombre de couleurs minimal nécessaire à toute coloration propre d’un graphe
donné, c’est ce qu’on appelle le nombre chromatique du graphe. La plupart du temps, on cherche
évidemment également à exhiber une coloration propre optimale qui utilise exactement ce nombre
de couleurs. Le problème de coloration a un nombre impressionnant d’applications dans beaucoup
de domaines scientifiques, et pas uniquement en mathématiques. L’efficacité d’un processeur, le
nombre de voies nécessaires dans une gare, le nombre de fréquences que nos smartphones doivent
être capables de recevoir, tous ces domaines en apparence sans rapport se ramènent à un problème
de coloration.

xxi
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Une coloration possible avec 4 couleurs des comtés anglais.

Au grand dam des scientifiques, le problème de coloration est NP-dur à résoudre, et il en va
de même pour trouver une solution non optimale au problème de coloration. Cela signifie qu’il est
fortement improbable que l’on parvienne à trouver une méthode efficace permettant d’établir le
nombre chromatique de n’importe quel graphe, et d’en trouver une coloration optimale. Quitte à
supposer que P 6= NP, ce que la grande majorité des mathématiciens croient être vrai, une telle
méthode ne peut purement et simplement pas exister. C’est pour cela que la recherche en coloration
de graphe s’évertue principalement à établir de grandes classes de graphes pour lesquelles ou bien
le problème de coloration est relativement plus simple à résoudre, ou bien le nombre chromatique
est relativement plus petit que dans le cas général. C’est notamment le cas des graphes épars, les
graphes dont la proportion d’arêtes est relativement faible.

Graphes épars et coloration aléatoire

Un graphe épars est un graphe contenant peu d’arêtes, soit globalement, soit à une échelle locale. La
classe de graphes épars la plus étudiées est certainement celle des graphes sans triangle, autrement
dit les graphes dont aucun ensemble de trois sommets n’est entièrement connecté par des arêtes.
Mais il existe de nombreuses autres classes de graphes épars très classiques, la classe des graphes de
grande maille (les graphes ne contenant pas de petit cycle), celle des graphes de clique bornée (seul
un nombre borné de sommets peuvent être entièrement connectés deux-à-deux), celle des graphes
de petit degré moyen (en moyenne, chaque sommet est incident à un petit nombre d’arêtes), celle
des graphes contenant un nombre borné de triangles, et tant d’autres. Les graphes épars sont
remarquables par le fait qu’ils ont tous une coloration propre qui utilise un nombre de couleurs
très inférieur à ce qui peut être attendu dans le pire des cas. En particulier, il est toujours possible
de majorer le nombre chromatique d’un graphe en fonction de son degré maximal. En effet, il est
possible de trouver une coloration propre d’un graphe de degré maximal ∆ n’utilisant que ∆ + 1
couleurs, à l’aide d’un algorithme glouton.

Cette première borne peut être réduite de 1 pour tous les graphes, à l’exception des graphes
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Algorithm 1 Algorithme glouton de coloration

Require: Un graphe G sur des sommets {v1, . . . , vn}
Ensure: c est une coloration propre de G utilisant k couleurs
k ← 1, i← 1
while i ≤ n do

if Toutes les couleurs apparaissent sur les sommets adjacents à vi then
k ← k + 1
c(vi)← k + 1

else
c(vi) ← a, où a est la couleur minimale n’apparaissant pas parmi les sommets adjacents à
vi

end if
i← i+ 1

end while
Return c

complets et des cycles impairs. Il s’agit du théorème de Brook. Cette borne améliorée est toutefois
encore très loin de décrire le comportement typique des graphes de degré maximal ∆, puisque
la plupart ont nombre chromatique au plus (1 + o(1))∆/(2 ln ∆) quand ∆ → ∞. En effet, cette
propriété est vraie pour les graphes aléatoires binomiaux avec probabilité tendant vers 1 tandis
que le nombre de sommets tend vers l’infini. Ainsi, étant donné un graphe de degré maximal ∆, il
est très improbable que son nombre chromatique soit supérieur à (1+o(1))∆/(2 ln ∆). Cependant,
il n’existe pas de caractérisation précise des graphes qui n’ont pas cette propriété. En revanche, les
graphes sans triangles peuvent tous être proprement coloriés avec un nombre de couleurs proche
de ce qui est attendu en général pour les graphes aléatoires. En 1983, Shearer [108] propose
un premier indice de cette propriété, en prouvant que le ratio d’indépendance des graphes sans
triangle de degré moyen d est au moins (1− o(1)) ln d/d quand d→∞, améliorant ainsi le résultat
de [3]. L’extension de ce résultat au nombre chromatique des graphes sans triangle de degré
maximal ∆ a été prouvée par Johansson en 1996 [65] à une constante multiplicative près, puis
récemment améliorée par Molloy [90] qui démontra la borne de (1 + o(1))∆/ ln ∆, quand ∆→∞.
Cette propriété des graphes sans triangle est cruciale dans cette thèse. Nous aurons l’occasion
de constater que les graphes aléatoires offrent de nombreuses intuitions sur le comportement des
graphes sans triangle, et d’autres classes de graphes épars. Cela est principalement dû au fait que
les processus aléatoires ont tendance à avoir une efficacité comparable sur les graphes sans triangle
et sur les graphes aléatoires, de par le fait que, chaque voisinage de sommet étant vide, une relative
indépendance entre les événements aléatoires entrant en jeu est garantie. Et en effet, les preuves
de Johansson et de Molloy reposent toutes deux sur une procédure de coloration aléatoire, qui est
démontrée suffisamment efficace.

Distribution hard-core

Au cours du premier chapitre, nous utilisons principalement la distribution hard-core afin d’en
déduire plusieurs de nos résultats. L’utilisation de cette distribution de probabilité est très
répandue dans le domaine de la physique statistique, et il se trouve que ses propriétés très spéciales
se révèlent particulièrement utiles à l’étude de la coloration de graphe, en appliquant cette distribu-



xxiv RÉSUMÉ SUBSTANTIEL EN FRANÇAIS

tion aux ensembles indépendants d’un graphe. Étant donné un graphe G, notons I(G) l’ensemble
des ensembles indépendants de G. Un ensemble indépendant aléatoire I tiré selon la distribution
hard-core de fugacité λ sur I(G) est telle que, pour tout ensemble indépendant I ∈ I(G),

Pr[I = I] =
λ|I|

Zλ(G)
, où Zλ(G) =

∑
I∈I(G)

λ|I|

est un facteur de normalisation, appelé le polynôme d’indépendance de G.

La distribution hard-core a une propriété spatiale de Markov très utile. De façon informelle,
cela signifie que la distribution hard-core se comporte indépendamment de l’extérieur à une échelle
locale. Plus formellement, étant donné un sous-ensemble de sommets X, si l’on conditionne sur le
fait que I\X = J , pour n’importe quelle réalisation possible J de I\X, alors la variable I∩X suit
une distribution hard-core de fugacité λ sur les ensembles indépendants de G[X \ N(J)]. Cette
propriété a pour conséquence qu’il est possible d’analyser un ensemble indépendant I tiré selon la
distribution hard-core à une échelle locale. Une telle analyse locale [34] permet de démontrer que

1

n
E [|I|] ≥ (1− ε) ln d

d

sur tout graphe sans triangle à n sommets de degré d suffisamment grand, en fixant λ = 1/ ln d� 1.
Cela implique que la taille moyenne d’un ensemble indépendant dans un tel graphe est au moins
(1− ε)n ln d/d.

Tout au long du Chapitre 1, nous montrons qu’il est possible d’utiliser la distribution hard-core
afin d’obtenir des résultats similaires sur les colorations fractionnaires. Pour cela, nous étendons
un algorithme glouton de coloration fractionnaire qui a été introduit dans un livre de Molloy et
Reed [93], et qui repose sur une distribution de probabilité sur les ensembles indépendants d’un
graphe. Étant donné un graphe G, cet algorithme construit une coloration fractionnaire de G à
partir d’une fonction de pondération ŵ : I(G) → [0, 1] définie sur les ensembles indépendants de
G, de sorte que chaque sommet appartient à des ensembles indépendants de poids total 1. On
note ŵ(G) la somme des poids des ensembles indépendants de G. Il est alors possible d’assigner
à chaque ensemble indépendant I un sous-ensemble mesurable w(I) de l’intervalle [0, ŵ(G)], de
mesure µ(w(I)) = ŵ(I) ; cette assignation est ce que l’on appelle une coloration fractionnaire de
G de poids ŵ(G).

L’algorithme fonctionne de la sorte : à chaque étape, il incrémente le poids de chaque ensemble
indépendant du graphe par une valeur proportionnelle à sa probabilité dans la distribution de
probabilité donnée en paramètre de l’algorithme, de sorte que le poids induit en chacun des sommets
est au plus 1, et atteint exactement 1 pour au moins un des sommets. Cette opération est alors
répétée sur le graphe obtenu après avoir retiré l’ensemble des sommets pour lesquels le poids
induit était 1, jusqu’à ce que le graphe obtenu soit vide, ce qui signifie que tous les sommets ont
été entièrement coloriés.

Cet algorithme nous permet d’étendre l’occupation locale de la distribution de probabilité en
une coloration fractionnaire. Plus explicitement, si étant donné un graphe G, pour tout sous-graphe
induit H de G, et pour tout sommet v de H, étant donné un ensemble indépendant aléatoire IH
tiré selon la distribution de probabilité sur les ensembles indépendants de H donnée en paramètre,
on a
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r∑
i=0

αi(v)E
[∣∣IH ∩N i

H(v)
∣∣] ≥ 1, (2)

pour un ensemble de paramètres (αi(v))ri=0 préalablement fixé, alors il existe une coloration frac-
tionnaire de G où chaque sommet est colorié avec un sous-ensemble mesurable de l’intervalle[

0,
r∑
i=0

αi(v)
∣∣N i

G(v)
∣∣] .

En fixant un certain ε > 0, si G est un graphe de degré maximal d, l’algorithme glouton de
coloration fractionnaire exécuté avec la distribution hard-core de fugacité λ en paramètre renvoie
une coloration fractionnaire de G de poids au plus

(i) (1 + ε)d/ ln d si G est sans triangle, en fixant λ = ε/2, à la condition que d ≥ dε pour un
certain dε qui ne dépend que de ε;

(ii) (1 + ε)d/ ln(d/
√
T ) si tout sommet de G est contenu dans au plus T ≥ 1 triangles, en fixant

λ = min{ε, 1/
√
T}, à la condition que d ≥ dε

√
T pour un certain dε qui ne dépend que de ε;

(iii) min
k∈Z≥4

(2d + 2k−3 + k)/k si G est de maille au moins 7, en fixant λ = 4 et en restreignant la

distribution hard-core aux indépendants maximaux du graphe G.

Nous établissons également les résultats analogues à (i) et (ii) pour le taux d’occupation de G, c’est-
à-dire l’espérance de la taille d’un ensemble indépendant de G. Ces résultats sont principalement
optimaux, ce que l’on illustre par des constructions aléatoires.

Afin d’obtenir les résultats sur la coloration fractionnaire d’un graphe G, il est nécessaire que
tout sous-graphe induit de G satisfasse (2). À cause de cela, on ne peut obtenir de meilleurs
résultats avec notre méthode en augmentant la profondeur r, car toutes les contraintes présentes
pour une certaine profondeur r′ < r sont également présentes à la profondeur r. Ainsi, augmenter
la maille de la classe de graphes étudiée ne nous permet pas d’obtenir de meilleures bornes dans
ce contexte. Cependant, il est possible d’utiliser une méthode similaire sans avoir besoin de con-
sidérer les sous-graphes induits, afin d’obtenir des bornes inférieures sur le ratio d’indépendance
des graphes. Alors, en utilisant la distribution hard-core de fugacité λ =∞, c’est-à-dire la distri-
bution uniforme sur les ensemble indépendants maximums, on obtient des bornes inférieures sur
le ratio d’indépendance des graphes d-réguliers où d ∈ {3, 4, 5}, de maille g variant entre 6 et 12,
qui améliorent les bornes précédemment connues.

d
g

6 7 8 9 10 11 12

3 2.727272 30/11 2.625224 2.604167 2.557176 2.539132 2.510378
4 3.153846 41/13 3.038497 3.017382 3
5 3.631579 3.6 3.5

Table 2: Bornes supérieures sur l’inverse du ratio d’indépendance.
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Colorations locales

Les résultats de Johansson et Molloy sont en fait valables pour une version plus forte du problème
de coloration, le problème de coloration par liste. Dans le contexte de la coloration par liste, on
attribue au préalable à chaque sommet une liste de couleurs qui lui est propre, et on n’autorise le
sommet à être colorié qu’avec une des couleurs de sa liste. Tandis que le problème de coloration
correspond à une instance particulière du problème de coloration par liste, où toutes les listes sont
identiques, la réciproque est fausse puisqu’une coloration propre par liste aura potentiellement
besoin de listes bien plus grandes que le nombre chromatique du graphe. La taille minimale
requise sur les listes afin d’assurer qu’il existe toujours une coloration propre par liste pour un
graphe donné est appelé sa choisissabilité. Par exemple, les graphes bipartis de degré minimal d
ont tous une choisissabilité supérieure à (1− o(1)) ln d quand d→∞.

Dans la plupart des applications de la vie courante, la choisissabilité d’un graphe correspond
au nombre de ressources que l’on doit rendre disponibles pour chacun des sommets du graphe afin
d’assurer que tous puissent être coloriés. Dans le cadre de la coloration par liste, tous les sommets
sont traités de la même manière, bien que le graphe puisse être hautement asymétrique, et ainsi
certains de ses sommets bien plus contraints que d’autres. Et si nous souhaitions maintenant
assigner à chaque sommet une liste dont la taille ne dépend que des propriétés locales du sommet
en question ? Ce type de question a été considéré pour la première fois dans un des articles
fondateurs de la coloration par liste [41], qui propose une caractérisation des graphes dits degré-
choisissables, c’est-à-dire les graphes pouvant être proprement L-coloriés pour toute assignation
de listes L vérifiant que L(v) = deg(v) pour tout sommet v. Ainsi, les graphes qui ne sont pas
degré-choisissables sont exactement les forêts de Gallai, à savoir les graphes dont chacun des blocs
est soit une clique, soit un cycle impair.

Un arbre de Gallai à 15 blocs (illustration empruntée de [29])

Dans le premier chapitre de cette thèse, on s’intéresse aux colorations locales. Une coloration
locale par liste est une coloration propre par liste étant donnée n’importe quelle assignation de
listes qui satisfasse que la taille de la liste assignée à un sommet donné dépende uniquement des
propriétés locales de ce sommet. Nous prouvons en premier lieu une généralisation du résultat de
Molloy à la coloration locale par liste. Étant donné ε > 0, tout graphe sans triangle G de degré
maximum ∆ peut être proprement colorié à partir de n’importe quelle assignation de listes L dès
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lors que

|L(v)| = (1 + ε)
d

ln d

pour tout sommet v de degré d ≥ dε = (72 ln ∆)2/ε. Les sommets de degré d ≤ dε doivent être
traités différemment; on requiert que leur liste soit de taille

min

{
(1 + ε)

dε
ln dε

, d+ 1

}
.

Notre résultat est en fait valide pour la DP-coloration, une version plus forte de la coloration par
liste. Nous exhibons en outre une construction de graphes bipartis où le traitement spécial des
sommets de petit degré est nécessaire afin d’assurer l’existence d’une coloration locale par liste, où
la valeur de dε est effectivement nécessairement croissante en termes de ∆.

Nous considérons également la coloration fractionnaire locale, qui consiste à trouver une col-
oration fractionnaire c qui soit telle que les couleurs assignées à chaque sommet v forment un
sous-ensemble mesurable de l’intervalle [0, γ(v)], où γ(v) dépend uniquement des propriétés lo-
cales de v, en l’occurrence son degré et la densité de son voisinage. Tous les résultats énoncés
dans le paragraphe précédent concernant la coloration fractionnaire s’étendent à ce contexte local.
Tandis que le nombre chromatique fractionnaire de n’importe quel graphe est toujours égal à sa
choisissabilité fractionnaire, cette équivalence n’est absolument pas claire dans le contexte local.
Ainsi, rien n’indique que l’existence d’une coloration fractionnaire locale assure l’existence d’une
coloration fractionnaire locale par liste, étant donné une assignation de listes de mesures adéquates.

Coloration à distance t

L’indice chromatique fort d’un graphe est la taille minimale d’une partition de ses arêtes en des
couplages induits — on désigne une telle partition par le nom de coloration forte des arêtes.
L’indice chromatique fort d’un graphe G peut être défini de manière équivalente comme le nombre
chromatique de L(G)2, le carré du line graph de G. Il est possible de trouver une application aux
colorations fortes des arêtes dans le cadre de l’allocation de fréquences dans les réseaux sans fil.
En 1985, Erdős et Nešetřil posent le problème de la détermination de la valeur maximale possible
de l’indice chromatique fort d’un graphe de degré maximal ∆. Ils conjecturent que cette valeur
est 5

4
∆2, atteinte en considérant un cycle de longueur 5 dont chaque sommet a été explosé en un

ensemble indépendant de taille ∆/2. Ils demandent en particulier s’il est possible d’obtenir une
borne supérieure sur cette valeur de la forme (2− ε)∆2, pour un certain ε > 0, ce qui améliorerait
la borne triviale de 2∆2 qui correspond au degré maximal du carré d’un line graph. Une réponse
positive à cette dernière question est fournie en 1997 par Molloy et Reed [91], puisqu’ils démontrent
que 1.998∆2 est une borne supérieure valide, à la condition que ∆ soit suffisamment grand. Ils
obtiennent ce résultat en montrant que le carré d’un line graph est toujours relativement épars,
à savoir que le nombre d’arêtes apparaissant dans chacun de ses voisinages est toujours au plus
(1− δ)

(
2∆2

2

)
, ce qu’ils montrent avec la valeur δ = 1/36. Un graphe satisfaisant une telle condition

peut être proprement colorié avec un nombre réduit de couleurs, à l’aide d’une procédure de
coloration aléatoire. Depuis, leur méthode a été améliorée ; en particulier le résultat sur les
voisinages épars a été amélioré jusqu’à l’obtention d’une borne asymptotiquement optimale avec
δ = 1/4 + o(1) quand ∆→∞ [25]. À ce jour, la meilleure borne générale connue est 1.835∆2, à la
condition que ∆ soit suffisamment grand [20]. Dans une autre direction, un résultat de la même
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nature que celui de Johansson a été proposé par Mahdian [87]. Ainsi, l’indice chromatique fort des
graphes de degré maximal ∆ ne contenant pas de cycle de longueur 4 est au plus (2 + ε)∆2/ ln ∆,
pour tout ε > 0, à la condition que ∆ soit suffisamment grand.

Il est possible de généraliser la notion d’indice chromatique fort à celle d’indice chromatique
à distance t d’un graphe G, qui correspond au nombre chromatique de L(G)t, la puissance t du
line graph de G. On définit similairement le nombre chromatique à distance t comme étant le
nombre chromatique de Gt, la puissance t du graphe G. Dans le Chapitre 2, nous procédons
à une analyse des colorations à distance t, et cherchons tout particulièrement à généraliser le
résultat de Mahdian à toute distance t. Une application directe des résultats sur la coloration des
graphes épars tels que ceux présentés dans le Chapitre 1 nous permet de démontrer que l’indice
chromatique à distance t de tout graphe ne contenant pas de cycle de longueur 2k, pour n’importe
quel k ≥ t fixé, est au plus (8 + ε)∆t/ ln ∆, à la condition que ∆ soit suffisamment grand en
termes de t et ε. Quand t ∈ {2, 3, 4, 6}, il existe des graphes bipartis de degré maximal ∆, maille
2t, et dont l’indice chromatique à distance t vaut (1 − o(1))∆t quand ∆ → ∞, pour une infinité
de valeurs de ∆. Ce sont les graphes d’incidence de géométries projectives. En ce qui concerne
les colorations de sommets à distance t, on montre que le nombre chromatique à distance t d’un
graphe de degré maximal ∆ ne contenant pas de cycle de longueur `, pour n’importe quel ` ≥ 2t+2
pair fixé, ou bien pour n’importe quel ` ≥ 3t impair fixé à la condition que t soit impair, est au
plus (4 + ε)∆t/ ln ∆, pour tout ε > 0, à la condition que ∆ soit suffisamment grand en termes de t
et ε. Quand t ≥ 11, on exhibe des constructions de degré maximal ∆, maille 8, et dont le nombre
chromatique à distance t vaut (∆/2)t. De plus, ces constructions sont biparties quand t est pair.
Quand t est impair, on exhibe une construction de degré maximal ∆, maille impaire 3t, et dont
le nombre chromatique à distance t vaut (∆/3)t. Tous les résultats de la même nature que celui
de Johansson sont optimaux à une constante multiplicative près, ce qui est illustré par les graphes
aléatoires.

La densité bipartie induite

La densité bipartie induite d’un graphe G est définie comme étant le degré moyen maximal d’un
sous-graphe biparti induit de G. Ce paramètre a été introduit par Esperet, Kang, Thomassé
alors qu’ils étudiaient la choisissabilité avec séparation [49]. Ils conjecturèrent que la densité
bipartie induite des graphes sans triangle de degré moyen d est au moins C ln d pour une certaine
constante C > 0. Cette conjecture reste ouverte dans sa version générale, mais une borne inférieure
légèrement plus faible, de la forme Cr

ln d
ln ln d

, a été montrée comme valide concernant la densité
bipartie induite des graphes ne contenant pas de clique de taille r, pour tout r ≥ 3 fixé [83].

Trouver un sous-graphe biparti induit dans un graphe donné G consiste à trouver deux ensem-
bles indépendants de G, pas nécessairement disjoints. Il est de plus demandé que le sous-graphe
induit par ces deux ensembles indépendants soit aussi dense que possible; cette condition struc-
turelle supplémentaire fait que l’on peut penser le problème de la détermination de la densité
bipartie induite d’un graphe donné comme étant conceptuellement plus dur que celui de calculer le
ratio d’indépendance. D’un autre côté, on montre que les deux ensembles indépendants induisant
le graphe biparti de densité maximale parmi les ensembles indépendants intervenant dans une col-
oration fractionnaire de poids k d’un graphe G de degré maximal d certifient que la densité bipartie
induite de G est au moins d/k. Ainsi, le problème de la densité bipartie induite est conceptuelle-
ment plus simple à analyser que celui de la coloration fractionnaire. En particulier, la version
de la conjecture sur la densité bipartie induite des graphes sans triangle étendue à la coloration
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fractionnaire est plus dure à résoudre. Cette conjecture a été proposée par Harris [59] et déclare
que tout graphe sans triangle de degré moyen maximal d a un nombre chromatique fractionnaire
inférieur à Cd/ ln d, pour une certaine constante C.

Nous prouvons la conjecture sur la densité bipartie induite dans le cas où d est suffisamment

grand en termes du nombre de sommets n du graphe, à savoir d = Ω
(√

n lnn
)

. La borne que

l’on démontre est en fait plus forte dans ce régime, puisque l’on montre que la densité bipartie
induite des graphes sans triangle de degré minimal d est toujours au moins d2/n = Ω(ln d), qui
est également valide si d désigne le degré moyen, quitte à remplacer d par d/2. Nous montrons
également que cette borne ne pourrait être améliorée que par un facteur multiplicatif de l’ordre de
lnn, à l’aide d’une construction pseudo-aléatoire. La résolution de la conjecture dans ce contexte
se réduit à un élégant problème de coloration fractionnaire, qui consiste à déterminer la valeur
maximale possible du nombre chromatique fractionnaire d’un graphe sans triangle à n sommets.
Nous démontrons que cette valeur est au plus (2+o(1))

√
n/ lnn quand n→∞, et une fois de plus

les graphes aléatoires nous donnent la meilleure borne inférieure sur cette valeur. Le processus sans
triangle construit un graphe sans triangle sur un nombre fixé de sommets n en tirant successivement
toutes les paires possibles de sommets dans un ordre aléatoire, et en ajoutant l’arête correspondante
au graphe à la condition qu’elle ne forme pas de triangle. Le graphe aléatoire obtenu à l’issue du
processus sans triangle est un graphe sans triangle maximal. Avec forte probabilité, il est de degré
maximal (1 + o(1))

√
n lnn/2; son nombre d’indépendance est (1 + o(1))

√
2n lnn, et son nombre

chromatique fractionnaire est (1/
√

2 − o(1))
√
n/ lnn, quand n → ∞. Cela démontre que notre

résultat est optimal à un facteur asymptotique 2
√

2 près.

Liens étroits avec les nombres de Ramsey

Il est toujours possible de trouver des structures régulières dans les graphes suffisamment grands.
Une formalisation de cet énoncé conceptuel a été démontrée en 1930 [103] ; le théorème de Ramsey
établit que, étant donnés deux entiers s et t, il existe un entier R(s, t) appelé nombre de Ramsey
tel que tout graphe contenant au moins R(s, t) sommets contient soit une clique de taille s, soit un
ensemble indépendant de taille t, tandis qu’il existe des graphes à R(s, t)−1 sommets ne contenant
aucun des deux. Ce théorème est fondamental en combinatoire, et a conduit à l’émergence de la
théorie de Ramsey, qui regroupe de nombreux problèmes cherchant à démontrer l’existence de
propriétés structurelles particulières dans les graphes suffisamment grands.

La détermination de la valeur exacte de R(s, t) est un problème majeur et d’une grande diffi-
culté; il y a encore un écart multiplicatif de 4 entre les meilleures bornes inférieure et suppérieure
connues à ce jour du logarithme du nombre de Ramsey diagonal lnR(s, s). Nous ne connaissons
pas de construction explicite de graphes démontrant une borne inférieure exponentielle sur R(s, s);
seuls les graphes aléatoires nous permettent de certifier sa croissance exponentielle selon l’état
actuel de nos connaissances. Une attention toute particulière est portée aux nombres de Ramsey
asymétriques, c’est-à-dire au comportement de R(s, t) quand s est fixé et t crôıt. La valeur de
R(3, t) est directement liée au ratio d’indépendance des graphes sans triangle, donc ses meilleures
estimations nous fournissent une référence concernant l’optimalité de nombreux de nos résultats
dans cette thèse. Par une application directe du résultat de Shearer sur le ratio d’indépendance des
graphes sans triangle, et une analyse récente du processus sans triangle [16, 52], on sait désormais
que
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t2

4 ln t
. R(3, t) .

t2

ln t
. (∗)

Tout le contenu de cette thèse est relié aux nombres de Ramsey asymétriques. Nous étendons
l’étude des nombres de Ramsey asymétriques en de nombreuses directions, par l’exclusion de cycles
plutôt que de cliques, par une borne sur le nombre de triangles plutôt qu’une stricte exclusion, et
par un ajout d’informations sur les ensembles indépendants, aussi bien qualitatif (une coloration
couvre tous les sommets du graphe avec des ensembles indépendants) que quantitatif (nous avons
parfois des données concernant la taille moyenne des ensembles indépendants). Beaucoup de ces
extensions ne pourraient être améliorées qu’à la condition d’améliorer par la même occasion (∗),
ce qui constituerait une révolution dans la théorie de Ramsey.



Chapter 0

Introduction

— Oh, you’re doing a PhD! So, tell me, what’s your subject?
Every PhD student has dealt with this question. They would then proceed to recite a title

far too long and too technical for anybody to comprehend. And, actually, no one asking for the
subject of one’s thesis expects to understand it; the mere purpose of this question is often simply
to have some fun hearing about an obscure branch of science that merely a handful of people in
the world might know of. But then I would tell about my subject, Graph Colouring. And my
questioners would be confused: those two words are not obscure at all to them, on the contrary
they even has some vague idea of what they might refer to. They would then become truly curious,
and would want to know more about this. How can someone spend three years of his life — if
not his entire career — working on colourings? Is this guy really spending office hours with some
coloured pencils, colouring some graphs on a piece of paper? There must be something more to
this.

And indeed there is. Let me begin this thesis with an involved answer to this question which
has been asked to me more often than I could count.

0.1 What is a graph?

But what on earth is a graph? Most have already heard this name, or used it, in various situations.
Many objects can be referred to as graphs, legitimately or by mistake. Some of those is the graph
of a mathematical function, which high school students are familiar with. In an abuse of language,
any graphical representation of data might be referred to as a graph, which yields a second kind
of occurrence of the name.

(a) Graph of a function (a trap) (b) Pie chart (not a graph) (c) Graffiti (not even close)

Figure 0.1.1: Throughout this thesis, a graph will never denote any of the above.

1



2 CHAPTER 0. INTRODUCTION

Let us now clarify what we will refer to as graphs all along this thesis, while entering the
fascinating world of graph theory. There will be a lot of drawings, and obviously maths will be
involved. We will give a precise mathematical definition to the word graph, which denotes a highly
generic combinatorial object appearing in so many situations that anyone might be confronted to
one of them, not once, but several times in their life.

0.1.1 An abstract structure to represent them all

Throughout all this work, a graph will denote a set of connections within some set of elements.
There are several possible ways of representing a graph, each having its pros and cons. The
preferred one, for it is the most visual and most often quick and handy, is through a drawing in
the plane; each element corresponds to some point, and each connection is represented by a line
— not necessarily a straight one — joining two points together (see Section 0.1.4.4 for a more
formal definition of graph drawing). There are infinitely many drawings possible of any fixed
graph, depending on where you decide to draw the points in the plane, and how you curve the
lines joining them together. Actually, graph drawing represents a whole field of research on its
own; how to draw some graph while respecting some constraints is far from being an easy task.

Figure 0.1.2: Two different drawings of a same graph, the tesseract Q4

(a) A path with 400 vertices (b) The same path

Figure 0.1.3: Sometimes the drawing is what matters!

In a more formal mathematical representation, a graph G is defined by a finite set of elements
V which we call the vertices , or the nodes of the graph, and some binary relation E ⊆

(
V
2

)
between

them, which is described by a set of unordered pairs of vertices; these pairs are called the edges
of the graph. In a drawing of G, the points represent the set V , and the lines represent the set
E. Graphs defined in this way are called simple graphs , in contrast with multigraphs which may
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contain loops (an edge joining a vertex with itself) and/or multiple edges (several edges joining
the same pair of vertices). This thesis focuses only on simple graphs.

It is often convenient, if not necessary, to label the n vertices of the graph in order to be able
to refer to them; the subset [n] of the first n integers being the preferred set of labels. Note that
this labelling might be implicit; this is the case in the drawing of a graph in the plane: each point
is labelled with its position in the plane, so with its coordinates. We do not make any distinction
between two differently labelled graphs when their underlying graph structure is the same, i.e.
when it is possible to obtain the second graph from the first through a relabelling of its vertices.
Such a relabelling operation is called a graph isomorphism, and any two graphs which can be
transformed one into each other through a graph isomorphism are said to be isomorphic. For non
mathematicians, isomorphic is just a fancy word to say that two graphs are essentially the same,
but potentially not represented in the same manner. Figures 0.1.2, 0.1.3, and 0.1.4 depict pairs of
isomorphic graphs.

Remark 0.1.1. The fact that two graphs G and G′ are isomorphic is denoted G ∼= G′.

1

2

4

3

f :


1 7→ D
2 7→ B
3 7→ C
4 7→ A

D

B C

A

G = (V,E), where
V = {1, 2, 3, 4} and
E = {{1, 2}, {1, 4}, {2, 3}, {3, 4}}

G′ = (V ′, E ′), where
V ′ = {A,B,C,D} and
E ′ = {{D,B}, {D,A}, {B,C}, {C,A}}

Figure 0.1.4: G and G′ are isomorphic through the graph isomorphism f

Graphs are the abstract mathematical structure which embodies all possible networks which we
might encounter in real life — and we are surrounded by them. In a non-exhaustive list of domains
in which we deal with networks, we can quote: anatomy (neural circuit), biology (protein inter-
action network), chemistry (crystal structures), computer sciences (web, peer to peer networks),
artificial intelligence (artificial neural network), statistics (Bayesian network), electricity (electrical
grid), telecom (telecommunication network), transportation (road network, rail network), urban-
ism (gas network, water distribution network).

(a) Atomium (b) London undergound (c) Saccharose molecule

Figure 0.1.5: Some real-life encounters of graphs
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A graph needs not exist as a concrete, tangible object in order to be interesting. It can be
used as an abstract structure to represent any set of elements which might pairwise interact —
it was actually defined exactly to fulfil this purpose. This is the case of social networks, where
the underlying graph contains the set of persons in the network as vertices, and contains an
edge between every two persons knowing each other (the graph of Facebook), or sharing some
attribute (two actors who played together in a movie, two readers who liked the same novel, two
consumers who bought the same item, ...). Studying those graphs is an efficient way of inferring
some behaviour prediction. Any recommendation algorithm, should it be targeted advertising on
Google, video suggestions on Youtube, or any other, works through the analysis of such structures.

Figure 0.1.6: The social network graphs can be quite monstrous

0.1.2 Some essential graphs

The number of graphs on n vertices is bigger than 2(
n
2)
n!

, which means that there are already more
than a hundred billion graphs on 12 vertices. Inside this astronomic bestiary lies a handful of
graphs whose number of occurrences in the literature is quite unfair compared to the others. The
reason for this surrepresentation is often due to some really specific and rare properties, which
make them more interesting or useful than the others, both in an objective and subjective sense.

Each of the following graphs is interesting as a whole, but some are also widely looked upon as
subgraphs of a larger graph. This is described in section 0.1.3.5.

Complete graphs. A complete graph is a graph containing all possible edges. The complete
graph on n vertices is denoted Kn. It embodies the structure of the n-dimensional simplex.

K3 K4 K5 K6 K7 K8

Figure 0.1.7: A depiction of the complete graphs of size 3 to 8
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Cycles and paths. A path is a sequence of vertices which are successively adjacent to each
other. A path on n vertices is denoted Pn, and its length is the number of edges it contains, which
is n− 1. The first and last vertex of the sequence are called the extremities of the path. A cycle
on n vertices is obtained by adding an edge between the extremities of the path Pn, thus closing
it. Such a cycle is denoted Cn, and its length is n.

P3 P4 P5 P6 P7 P8

C3 C4 C5 C6 C7 C8

Figure 0.1.8: A depiction of the paths and cycles of length 3 to 8

The paths are the structure behind a bus line (each stop being a vertex). Each cycle Cn
embodies the structure of a polygon with n sides, and is therefore often referred to with the name
of that polygon.

Remark 0.1.2. The graphs C3 and K3 are isomorphic, and referred to as triangle.

Complete multipartite graphs. A complete r-partite graph is a graph whose vertex set V can
be partitionned into (V1, . . . , Vr) for some r ≥ 2, such that it contains no edges within Vi for any i
(we say that Vi is an independent set), and all possible edges between Vi and Vj, for any j 6= i. Let
ni denote |Vi| for every i, then the complete r-partite graph associated to (V1, . . . , Vr) is denoted
Kn1,...,nr . When all the values ni are equal to some n, we say that the complete r-partite graph
is balanced, and may denote it Kr∗n. The special case when r = 2 is called the complete bipartite
graph.

V2

V1

Figure 0.1.9: The complete bipartite graph K6,10

Remark 0.1.3. The order of the parts in a complete multipartite graph does not matter;

∀σ ∈ Sr, Kn1,...,nr
∼= Kσ(n1),...,σ(nr).
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V1

V2 V3

V4

Figure 0.1.10: The complete (balanced) 4-partite graph K5,5,5,5 = K4∗5

Therefore, a monotone order is usually preferred.

For some fixed n, letting n = ar+b be the Euclidean division of n by r, the complete multipartite
graph Kn1,...,nr , where n1 = . . . = nb = a + 1 and nb+1 = . . . = nr = a, is the densest possible
graph on n vertices avoiding Kr+1 as a subgraph — which means that there exists no graph on n
vertices with that property and more edges. Those are called the Turan graphs ; they are essential
in Turán-type problems, which consist in finding densest graphs avoiding one or several subgraphs
(subgraphs are properly defined in Section 0.1.3.5).

Grids. We count three different regular grids on the plane. Those are the square grid, the
triangular grid, and the hexagonal grid, the two later being the dual of each other (the dual
operation is properly defined in Section 0.1.4.4). The square grid of dimension n×m is the dual
graph of a n×m chessboard. More formally, it is the Cartesian product (defined in Section 0.1.4.6)
of two paths: Pn � Pm. The triangular grid of dimension n×m is obtained by adding a diagonal
line within every square (copy of C4 as a subgraph) of the square grid of dimension n×m.

Figure 0.1.11: The square grid of dimension 6× 9.

It is possible to generalise square grids to higher dimensions. In three dimension, a n×m× p
square grid is the Cartesian product of three paths Pn � Pm � Pp.
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Figure 0.1.12: The triangular grid (black) and its dual hexagonal grid (blue)

Figure 0.1.13: The square grid of dimension 6× 9× 3

Grids are essential in game theory, since a wide range of combinatorial games are defined on
grids (chess, go, minesweeper, hex, tic-tac-toe, connect four, rikudo, sudoku, . . . ). They also are
fundamental to statistical physics, for most crystals and pseudo-crystals organise themselves into
grid structures.

Platonic solids. There are five regular tridimensional polyhedra, known as the Platonic solids.
These are the tetrahedron (4 triangular faces, self-dual), the cube (6 square faces) and the octa-
hedron (8 triangular faces) which are dual of each other, and the dodecahedron (12 pentagonal
faces) and the icosahedron (20 triangular faces) which are dual of each other.

(a) Tetrahedron (b) Cube (c) Octahedron (d) Dodecahedron (e) Icosahedron

Figure 0.1.14: The five Platonic solids
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Remark 0.1.4. The tetrahedron graph is isomorphic to K4, and the octahedron graph is isomorphic
to K2,2,2.

Kneser graphs. A Kneser graph is defined through two parameter n and k, and related to set
theory. Each vertex of the Kneser graph KGn,k corresponds to one of the

(
n
k

)
k-element subsets of

a set of n elements. There is an edge between two vertices in KGn,k whenever the corresponding
two subsets are disjoint.

Whe call the subset of Kneser graphs when n = 2k+ 1 the odd graphs . So KG2k+1,k is referred
to as the odd graph Ok+1.

All odd graphs On when n ≥ 4 are known to have a Hamiltonian cycle (a cycle going through all
its vertices, see section 0.1.3.5), while this is not the case of O3, though it contains a Hamiltonian
path (a path going through all its vertices). Moreover, their odd girth (the size of a smallest cycle
of odd length, see Section 0.1.3.5) is 2n− 1.

1,2

3,5
3,4

5,2

5,1

2,4

2,3

4,1

4,5

1,3

Figure 0.1.15: KG5,2 = O3, also known as the Petersen graph

Remark 0.1.5. When k = 1 the Kneser Graph KGn,1 is isomorphic to the complete graph Kn.

Remark 0.1.6. All graphs presented in this section exhibit some kind of symmetry, some more
obviously than the others. We will define a precise notion of symmetry for graphs in Section 0.1.3.7,
which a lot of them satisfy. The reason for this is that symmetry is interesting both from a
theoretical point of view — it eases the analysis when every vertex behaves in the same way —
and an applied one — each node should be treated equitably in a computer network for instance.
Last but not least, symmetry occurs everywhere in nature; this is notably the case in crystal
structures, so the graphs representing them must be symmetric.

0.1.3 The anatomy of graphs

As you may have noticed by now, although all sharing a common very simple definition, graphs
can take a large variety of shapes. Some are well structured, some are rather messy. We are now
going to gather all the tools needed in order to dissect them, and eventually to understand their
various behaviours.
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0.1.3.1 Incidence in graphs

When a given edge e contains a vertex u, we say that u and e are incident. The two vertices
incident to some edge are called its extremities , or end-vertices . Two edges having a common
extremity are said to be incident, or adjacent .

More generally, we might consider bigger structures on graphs (paths, cycles, faces . . . ). We
generalise the notion of incidence by saying that two objects are incident whenever one is contained
in the other. The notion of adjacency is more versatile when we try to generalise it; it concerns
two objects having a non-empty intersection, with possible additional requirements on the type of
this intersection. It can for instance be required that the intersection contains at least an edge, as
it is the case for the adjacency of faces in plane graphs (see Section 0.1.4.4).

0.1.3.2 Notations and basic operations

From now on, the set of vertices of any graph G is denoted V (G) and its size n(G). The set of
edges of G is denoted E(G), and its size e(G). For two given vertices u and v, the edge linking u
and v is denoted uv, or vu indifferently.

We describe some basic elementary operations which might be performed on a graph.

Definition 0.1.1. Let G be a graph.

1. Vertex deletion: Given a vertex v ∈ V (G), the vertex deletion of v from G returns the
graph G− v, where V (G− v) = V (G)− v and E(G− v) = E(G) \

(
{v} × V (G)

)
. In other

words, the vertex v is removed from the set of vertices of G, and every edge incident to v is
removed from the set of edges of G.

2. Edge addition: Given an edge e /∈ E(G), the edge addition of e to G returns the graph
G + e, where V (G + e) = V (G) and E(G + e) = E(G) + e. In other words, the edge e is
added to the set of edges of G.

3. Edge deletion: Given an edge e ∈ E(G), the edge deletion of e from G returns the graph
G − e (also denoted G \ e), where V (G − e) = V (G) and E(G − e) = E(G) − e. In other
words, the edge e is removed from the set of edges of G.

4. Edge contraction: Given an edge e = uv ∈ E(G), the edge contraction of e in G returns the
graph G/e, where V (G/e) = V (G)−u−v+w for some new vertex w /∈ V (G), and E(G/e) =
E(G)∩

(
V (G/e)

2

)
∪{wx | ux ∈ E(G) or vx ∈ E(G)}. In other words, the extremities of e are

merged together into a new vertex, all the while keeping the incidence with the relevant
edges.

0.1.3.3 Neighbourhood and degree

Definition 0.1.2. Let G be a graph.

1. When there is an edge in G between two vertices u and v, we say that u is a neighbour
of v in G, and symmetrically v is a neighbour of u in G. We also say that u and v are
adjacent , which we denote u ∼G v. The set of all neighbours of a given vertex v is called the
neighbourhood of v, and denoted NG(v) — the subscript might be omitted when there is no
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Figure 0.1.16: An illustration of edge contraction.

ambiguity on the relevant graph. The size of the neighbourhood NG(v), which corresponds
to the number of edges incident to v, is called the degree of v, and denoted degG(v);

u ∼G v ⇐⇒ uv ∈ E(G),

NG(v) = {u ∈ V (G) | uv ∈ E(G)} ,
degG(v) = |NG(v)| = # {e ∈ E(G) | v ∈ e} .

2. The closed neighbourhood of some vertex v in G, denoted NG[v], is obtained by adding v to
its neighbourhood in G;

NG[v] = NG(v) + v.

3. We extend the neighbourhood notion to subset of vertices;

∀X ⊆ V (G), NG(X) =
⋃
v∈X

NG(v) \X, and

NG[X] = NG(X) ∪X.

4. The maximum degree of G, denoted ∆(G), is the maximum of all the degrees of the vertices
in V (G);

∆(G) = max
v∈V (G)

degG(v).

The minimum degree δ(G) is defined similarly;

δ(G) = min
v∈V (G)

degG(v).

5. A d-regular graph is a graph where every vertex is of degree d.

6. The average degree of G, denoted ad(G), is the average of all the degrees of the vertices in
V (G);

ad(G) =
1

n(G)

∑
v∈V (G)

degG(v) =
2e(G)

n(G)
.

Remark 0.1.7. The sum of the degrees in a graph G equals twice its number of edges;∑
v∈V (G)

degG(v) = 2e(G).
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G : 4

3

55

4

7

5

4 6

5

δ(G) = 3
∆(G) = 7
ad(G) = 4.8

Figure 0.1.17: Each vertex is labelled with its degree.

Indeed, summing all the degrees is tantamount to counting each edge uv ∈ E(G) twice, once in
degG(u), and once in degG(v). This well-known result is known as the handshaking lemma. A
direct consequence is that any d-regular graph with d odd must have an even number of vertices.

0.1.3.4 Connectivity in graphs

Definition 0.1.3. Let G be a graph.

1. Given two vertices u, v ∈ V (G), let us denote u ∼∗G v whenever there exists a path in G
between u and v. It is routine to show that ∼∗G is an equivalence relation on V (G), which is
the transitive closure of the adjacency relation ∼G. The equivalence classes induced by ∼∗G
are called the connected components of G. In other words, a connected component of G is
a maximal subset of its vertices which can be pairwise joined by some path. If G contains
only one connected component, we say that G is connected , otherwise we say that G is
disconnected .

2. When G is connected, a cut in G is a subset of edges X ⊆ E(G), the removal of which
creates two or more connected components. Alternatively, a cut may be described by a
bipartition of the vertices of G; it then consists of all the edges lying between the two parts
of the partition. A vertex-cut in G is a subset of vertices X ⊆ V (G) such that the subgraph
induced by V (G) \X is disconnected. A cut of size 1 is called a bridge, and a vertex-cut of
size 1 is called a cut-vertex .

3. For any k ≥ 1, we say that G is k-edge-connected if all cuts of G have size at least k. We
say that G is k-connected if G contains at least k + 1 vertices, and all vertex-cuts of G have
size at least k.

4. A block of G, or 2-connected component, is a maximal (therefore induced) 2-connected
subgraph of G. When G is connected, it can be decomposed into a tree-like structure of
blocks (trees are properly defined in Section 0.1.5.1).

0.1.3.5 Subgraphs

A primordial notion on graphs is the one of subgraphs. A first way to handle the structure of some
large graph is to consider which small subgraphs appear within its structure, on a regular basis,
on some occasional occurrences, or never at all.

Definition 0.1.4. Let G be a graph.
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1. A graph H is a subgraph of G whenever, up to some relabelling of the vertices of H, E(H) ⊆
E(G). We usually denote this H ⊆ G, and say that G is a supergraph of H. When moreover
V (H) = V (G), we say that H is a spanning subgraph of G.

2. For some subset of vertices X ⊆ V (G) of G, the induced subgraph G[X] is the graph with X
as set of vertices, and E(G)∩

(
X
2

)
as set of edges. The graph G[X] is obtained by performing

a vertex deletion of every vertex v /∈ X on G. We say that H is an induced subgraph of G
whenever there exists some subset X ⊆ V (G) of vertices of G such that H is isomorphic to
G[X]. In other words, H is a maximal subgraph of G on a fixed subset of vertices.

3. Given a fixed graph H, we say that G is H-free if H is not a subgraph of G. Depending on
the context, only induced copies of H might be forbidden in G. This concept generalises to
F -free graphs, where F is a given family of graphs.

4. A given property on graphs is said to be hereditary whenever, if true for some graph G, it
remains true for every induced subgraph H of G. For instance, having maximum degree at
most ∆ is a hereditary property, while having minimum degree at least δ or average degree
at least d is not.

Now that the concept of subgraph has been introduced, we can define the maximum average
degree and degeneracy of a graph, which are the hereditary versions of the average degree and
minimum degree in a graph.

Definition 0.1.5. Let G be a graph.

1. The maximum average degree of G, denoted mad(G), is defined as the maximum over all
subgraphs H of G of the average degree of H;

mad(G) = max
H⊆G

ad(H) = max
X⊆V (G)

2e(G[X])

|X|
.

2. The degeneracy of G, denoted δ∗(G), is defined as the maximum over all subgraph H of G
of the minimum degree of H;

δ∗(G) = max
H⊆G

δ(H).

When δ∗(G) = d, we say that G is d-degenerate.

There is actually a strong correlation between the maximum average degree and degeneracy of
a graph, which can differ by at most a multiplicative factor of 2, as the following lemma states.

Lemma 0.1.1. Every graph G contains a subgraph H of minimum degree at least mad(G)/2. So⌈
mad(G)

2

⌉
≤ δ∗(G) ≤ bmad(G)c .

Proof. We show that, given a graph H of average degree d and minimum degree δ < d/2 on n
vertices and m edges, it is possible to find a subgraph of H of larger average degree. To this end,
let v be a vertex of minimum degree in H, we show that the average degree of H − v is greater
than d;

ad(H − v) =
2(m− δ)
n− 1

>
2m

n
= d.
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Indeed,
2m(n− 1) = 2mn− dn < 2(m− δ)n = 2mn− 2δn.

Now given any graph G, choose H to be a subgraph of G whose average degree reaches the
maximum average degree of G. H contains no vertex v of degree less than mad(d)/2, for otherwise
H − v would be of higher average degree, a contradiction.

Cliques and independent sets. Given a graph, a classical problem with many possible ap-
plications consists in finding subsets of vertices all interacting together, or on the contrary not
interacting at all together. Those are the cliques and independent sets of the graph.

Definition 0.1.6. Let G be a graph.

1. An independent set , or stable set of G is a subset I ⊆ V (G) of its vertices inducing no edge;

E(G[I]) = ∅.

It is maximal if there exists no independent set I ′ of G such that I ( I ′. It is maximum if
there exists no independent set I ′ of G such that |I| < |I ′|. The independence number , or
stability number of G is the size of a maximum stable set in G; it is denoted α(G). We denote
respectively I(G), Imax(G), and Iα(G) the set of independent sets, maximal independent sets,
and maximum independent sets of G.

2. Complementarily, a clique of G is a subset W ⊆ V (G) of its vertices inducing all possible
edges;

E(G[W ]) =

(
W

2

)
.

It is said to be maximal if there is no clique in G strictly containing it, and maximum if
there is no clique in G of larger cardinality. The clique number of G is the size of a maximum
clique in G; it is denoted ω(G).

Remark 0.1.8. A clique subgraph is the subgraph induced by a clique.

1. A clique subgraph is always induced, since it already contains all possible edges spanning a
subset of the vertices of the supergaph.

2. Every graph H appears as a subgraph in the complete graph Kn(H).

A classical algorithmic problem in graph theory consists in establishing the values α(G) and
ω(G) of a given graph G. This problem is NP-hard (see Section 0.2.4), and is subject to an
extensive amount of research.

Cliques and independent sets are the heart of Ramsey theory, an active branch of research in
Combinatorics, which was initiated by a fundamental theorem by Ramsey. Its statement can be
informally formulated as the fact that in any large enough graph, there must be some neat regular
structures. Therefore, no graph can be messy everywhere.

Theorem 0.1.2 (Ramsey, 1930 [103]). For every integers r and s, there exists an integer R(r, s)
such that any graph on at least R(r, s) vertices either contains a clique of size r or an independent
set of size s.
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The optimal value of R(r, s) is called the Ramsey number with parameters r and s. When
r = s, the term diagonal Ramsey numer is used, while when one of r or s is fixed, and the other
varies, the term off-diagonal Ramsey number is used. Computing the exact value or R(r, s) for
various values of r and s is a hard theoretical problem; the diagonal Ramsey numbers are only
known to grow exponentially, with a multiplicative constant of 4 in the exponent between the best
known lower and upper bounds.

Paths. A lot of applications of graph theory consist in finding a path with some given properties
as a (non induced) subgraph of a graph. For instance, the role of a GPS is to find a shortest
possible path between a starting point and a finishing point in the graph formed by the roads of
the world.

The paths in graphs also let us define the notion of (discrete) distance. This notion can be
generalised to graphs with weighted edges. The length of a path in a weighted graph is the sum
of the weights of its edges. This is needed in the case of the graph of the roads of the world; each
edge representing a portion of rode between two cities has a weight corresponding to the length of
the portion (in kilometres).

Definition 0.1.7. Let G be a graph.

1. A shortest path between two vertices u, v ∈ V (G) is a path of extremities u and v of minimal
length, among all possible paths between u and v in G.

2. The distance dG(u, v) between two vertices u, v ∈ V (G) is the length of a shortest path
between u and v. The eccentricity ε(v) of a given vertex v ∈ V (G) is its maximal distance
to any other vertex in G;

ε(v) = max
u∈V (G)

distG(u, v).

3. The diameter of G, denoted diam(G), is the maximal eccentricity among all vertices of G,
while the radius of G, denoted rad(G), is the minimal eccentricity;

rad(G) = min
v∈V (G)

ε(v), and

diam(G) = max
v∈V (G)

ε(v).

Remark 0.1.9. It is very well possible that in some graph G, there exists no path between two
vertices u, v. In this case, we say that u and v are disconnected in G, and by convention we set
distG(u, v) =∞.

In a given real-life network G, a vertex v0 with minimum eccentricity (ε(v0) = rad(G)) is of
interest whenever we wish to propagate some kind of information through the connections between
the nodes. Such a node would indeed be the perfect choice as a first emitter, for this would minimise
the time of propagation through all the nodes.

Instead of looking for shortest paths in a graph, we might be interested in looking for longest
paths (recall that a path must have distinct vertices; otherwise we call that a walk). While there
exist efficient algorithms to compute all shortest paths in a given graph (in quadratic time), the
problem of finding one longest path in a given graph is NP-complete (defined in Section 0.2.4),
and so no sub-exponential time algorithm is known to complete this task.

Definition 0.1.8. A Hamiltonian path of a given graph G is a path subgraph of G spanning all
vertices of G, so isomorphic to Pn(G).
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Cycles. Among the other subgraphs of importance lie the cycles, the most notable one being
arguably the triangle.

Since the graphs that we consider in this thesis are simple and loopless, it implies that the
shortest possible cycle is the triangle, of length 3.

Definition 0.1.9. Let G be a graph.

1. The girth of G, denoted girth(G), is the size of a smallest cycle subgraph in G. The even-
girth of G, denoted ge(G) is the length of a smallest cycle of even length in G. The odd-girth
go(G) is defined similarly. In particular, girth(G) = min(ge(G), go(G)).

2. A Hamiltonian cycle of G is a (non induced) subgraph of G isomorphic to Cn(G), so a
cycle spanning all vertices of G. When G contains a Hamiltonian cycle, we say that G is
Hamiltonian.

Figure 0.1.18: A Hamiltonian cycle (in red) of the dodecahedron

Remark 0.1.10. The smallest cycle subgraph of any given graph is always induced, since otherwise
it would contain a chord (an edge between two non-consecutive vertices of the cycle), which would
create two smaller cycles. So girth(G) is the length of a smallest induced cycle in G. Moreover, it
is always at least 3 if G is a simple loopless graph.

The problem of finding a Hamiltonian cycle in a given graph, or in one of its induced subgraphs,
and more particularly a shortest Hamiltonian cycle in a weighted graph (should there exist at least
one), is known as the Travelling Salesman Problem. This notorious optimisation problem consists
in finding an optimal route going through a given set of cities and returning to the origin city.
Depending on the formulation of the problem, it might be allowed or not to visit the same city
twice.

Matchings and f-factors. We now introduce subgraphs which are both important as real-life
structures, and powerful tools at the origin of many results in graph theory.

Definition 0.1.10. Let G be a graph.

1. Given a function f : V (G)→ N, a f -factor of G is a spanning subgraph H of G satisfying

∀v ∈ V (G), degH(v) = f(v).

2. Given two function f, g : V (G) → N, a (g, f)-factor of G is a spanning subgraph H of G
satisfying

∀v ∈ V (G), g(v) ≤ degH(v) ≤ f(v).
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3. A matching of G is a set of pairwise non incident edges of G; in particular it induces a
(0, 1)-factor of G. A perfect matching of G is a spanning matching of G, which therefore
induces a 1-factor of G.

A notable fact, rare enough in the domain to be highlighted, is that maximum matchings can
be found efficiently (in polynomial time, proportional to n(G)2 × e(G)) in any graph G. There
is a strong duality between matchings and independent sets in graphs, the former being at the
core of many edge-related problems, and the latter at the core of the corresponding vertex-related
problems. As a consequence, the edge version of a problem is often easier than its vertex version,
because of the hardness of finding maximum independent sets in graphs.

It is also worth to mention a result from Kaino and Saito which provides a sufficient condition
for finding a (g, f)-factor in a graph.

Theorem 0.1.3 (Kano, Saito, 1983 [72]). Let G be a graph and θ ∈ [0, 1]. Let g, f : V (G)→ N be
two integer functions satisfying

∀v ∈ V (G), g(v) ≤ θ degG(v) ≤ f(v) and g(v) < f(v).

Then G has a (g, f)-factor.

Spanning trees. There is no need to explain the interests of analysing the possible explorations
and traversals of a given graph; the applications for this are countless. For this task, one subgraph
is of paramount importance; this is the spanning tree.

Definition 0.1.11. Let G be a given connected graph. A tree is any connected acyclic graph, and
a spanning tree of G is a tree subgraph of G spanning all its vertices.

Remark 0.1.11. A Hamiltonian path is a particular example of a spanning tree.

We are often looking for a Minimum Spanning Tree (MST) in a given weighted graphG, that is a
spanning tree which minimises the sum of the weights of its edges. This is the subgraph of minimum
weight which still ensures connectivity within the set of vertices V (G). There are numerous efficient
algorithms to find a MST of G, such as Kruskal’s, which works in O(e(G) lnn(G)) time.

Minimum spanning trees are fundamental in many optimisation problems related to connec-
tivity in graphs. For instance, in the variant of the Travelling Salesman Problem where every
city might be visited several times, and the distance between two cities satisfies the triangular
inequality, a minimum spanning tree provides a 2-approximation of the optimal route, that is a
route which is no more than twice the length of an optimal one.

In the main content of this thesis, we will use on several occasions another kind of spanning
trees, the Breadth First Search Trees . A tree T is a breadth first search tree in a given graph G if
it is a spanning subgraph of G rooted in some vertex v, with the property that the distance from
the root v to any vertex u in T is equal to distG(u, v). These trees are powerful tools in the context
of structural analysis, especially when one is interested in the traversals of G.

0.1.3.6 How to represent a graph in a computer

We have seen two ways of representing a graph, through a drawing, or through a list of its edges,
given some arbitrary labelling of its vertices. The first one is obviously a human-oriented repre-
sentation, which is absolutely unfit for computers to handle. The second one could be grasped by
computers, but is quite impractical to use. Therefore, there is a need for a better computer-oriented
representation of graphs.
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Adjacency matrix. The most simple and convenient way of manipulating a graph on a computer
is through its adjacency matrix.

Definition 0.1.12. Let G be a graph with vertices labelled 1, . . . , n. The adjacency matrix
AG = [ai,j](i,j)∈[n]2 of G is the n× n-matrix defined by

∀(i, j) ∈ [n]2, ai,j =

{
1 if there is an edge between i and j,
0 otherwise.

Remark 0.1.12.

1. The fact that the graphs we consider are simple, loopless, and unoriented (the adjacency
relation is symmetric) implies that the element ai,j denotes the number of edges connecting
i and j, all diagonal elements have a zero value: ∀i ∈ [n], ai,i = 0, and the adjacency matrix
is symmetric: A>G = AG.

2. Since the adjacency matrix is defined through some arbitrary labelling of the graph, there
are different adjacency matrices representing the same graph. They can be obtained by
permutation of the rows and columns.

K3,3 K6 C6

1

4

2

5

3

6

12

3

4 5

6

12

3

4 5

6


0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0




0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0




0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0


Figure 0.1.19: Examples of adjacency matrices of some graphs

The adjacency matrix representation of graph has several advantages. Checking the presence
or absence of a given edge is immediate, and there exist a lot of algebra tools which can help
manipulating those adjacency matrices in an efficient way.

The main drawbacks appear when only a small fraction of all the
(
n
2

)
possible edges are present

in the graph. In this case, this representation of the graph occupies more memory than needed.
Moreover, having access to the neighbourhood of one vertex will always need a whole exploration
of one row of the adjacency matrix, which is also a loss of time when the number of neighbours is
a small fraction of the total number of vertices.

Neighbourhood list. A good way to represent a sparse graph is through a list (actually an
array) of all its neighbourhoods (which might be represented with lists or sets). This solves the
two main drawbacks of the adjacency matrix representation, since now the memory occupation
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is always of the order of the number of edges of the graph, and we have direct access on the
neighbourhood of a given vertex. However, this is at the cost of having a non-immediate check of
the presence or absence of a given edge — this is however not a problem when we need to check
the presence or absence of several edges incident to a same vertex.

module Graph = s t r u c t
type graph = {n : i n t ; mutable edges : i n t l i s t array }
l et empty n = {n = n ; edges = Array . make n [ ] }
l et s i z e g = g . n
l et i s e d g e g i j = L i s t .mem j g . edges . ( i )
l et neighbours g i = g . edges . ( i )
l et degree g i = L i s t . l ength g . edges . ( i )
l et add edge g u v =

i f u <> v && not ( i s e d g e g u v ) then begin
g . edges . ( u) <− v : : g . edges . ( u ) ;
g . edges . ( v ) <− u : : g . edges . ( v ) ;

end
end

Remark 0.1.13. In this thesis, many results are obtained with the help of computer calculus. To
this extent, we needed a way to represent graphs in a programming language within an efficient
structure, in order to be able to perform powerful computations. These computations, by nature,
rely on a high amount of recursion, often both on a structural level and an algorithmic level,
which is quite common in mathematically oriented programming. For this reason, the chosen
programming language was OCaml, for its efficient management of recursion, and for its rigour
regarding compilation, which helps at ensuring the correctness of our programs. Throughout this
manuscript, there will be some illustrations of code which are directly extracted from the various
programs which we used in our work. Nevertheless, for convenience of the reader, every algorithm
whose understanding is crucial in the context of this thesis will be written in high level pseudo-code.

0.1.3.7 Homomorphisms and symmetries

Definition 0.1.13.

1. A graph homorphism from a graph G to a graph H is a mapping φ : V (G) → V (H) which
preserves the edges;

uv ∈ E(G) =⇒ φ(u)φ(v) ∈ E(H).

2. If φ is bijective, and φ−1 is also a graph homomorphism, then φ is a graph isomorphism;

uv ∈ E(G) ⇐⇒ φ(u)φ(v) ∈ E(H).

A graph isomorphism from a graph to itself is called a graph automorphism.

3. We say that a given graph G is vertex-transitive if for every pair of vertices u, v ∈ V (G),
there exists some automorphism f of G such that f(u) = v. Informally, this means that the
vertices of the graph are indistinguishable one from each other.
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7→
φ

Figure 0.1.20: Some homomorphism φ into the graph C5

From the essential graphs listed in Section 0.1.2, the vertex-transitive ones are the complete
graphs, cycles, balanced multipartite graphs, Platonic solids, and Kneser graphs. In general, most
graphs obtained from algebraic structures are highly symmetric, and so vertex-transitive.

0.1.4 Constructions

We are now going to see some convenient operations which let us construct a graph from another,
two others, or a structure from some other domain (geometry, algebra, . . . ).

0.1.4.1 Complement graph

Definition 0.1.14. Given a graph G on n vertices, the complement of G, denoted G, is obtained
by removing all the edges of G from Kn;

V
(
G
)

= V (G), and

E
(
G
)

= E(G) =

(
V (G)

2

)
\ E(G).

0.1.4.2 Line graph

Most concepts defined on graphs focus on the vertices, with some constraints added by the edges
spanning them. One might want to focus on the edges of the graph instead, with constraints on
incident edges. In order to avoid having to give an alternative definition of any graph concept with
a focus on the edges, we consider line graphs.

Definition 0.1.15.

1. Given a finite collection F = (Xi)i∈[n] of sets, the intersection graph GF associated to F is
defined by

V (GF ) = [n], and

E(GF ) =

{
ij ∈

(
[n]

2

) ∣∣∣∣ Xi ∩Xj 6= ∅
}
.
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2. Given a graph G, the line graph of G, denoted L(G), is the intersection graph of the edges
of G. Every pair of incident edges in G is linked by an edge in L(G);

V (L(G)) = E(G), and

E(L(G)) =

{
{e, e′} ∈

(
E(G)

2

) ∣∣∣∣ e ∩ e′ 6= ∅
}
.

Figure 0.1.21: The line graph of the cube, drawn in red over the cube

Line graphs have a lot of nice properties, and so numerous hard problems on graphs become
easy on line graphs.

Remark 0.1.14. Let G be a simple connected graph of maximum degree ∆(G) ≥ 3. Then

ω(L(G)) = ∆(G).

Indeed, the set of edges incident to any vertex v ∈ V (G) induces a clique subgraph in L(G), and if
a clique WL in L(G) contains at least 3 edges incident to some vertex v ∈ V (G), then all the edges
in WL must be incident to v. Therefore, a clique subgraph in L(G) is either a subgraph of G of
maximum degree 2, and so necessarily a triangle, or a star, the biggest possible one being K1,∆(G).

0.1.4.3 Graph powers

Definition 0.1.16. Given a graph G, the t-th power Gt of G is obtained from G by adding edges
between all pairs of vertices at distance at most t in G;

V
(
Gt
)

= V (G), and

uv ∈ E
(
Gt
)
⇐⇒ distG(u, v) ≤ t.

Remark 0.1.15. Let G be a connected graph on n vertices of maximum degree ∆.

1. Gdiam(G) is isomorphic to Kn.

2. ∆(Gt) ≤
t∑
i=1

∆(∆− 1)i−1 ≤ ∆t.

3. The adjacency matrix AGt of Gt can be easily obtained from the adjacency matrix AG of G;

AGt + In = (AG + In)t,
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Figure 0.1.22: The distance-3 graph of the dodecagon C12

where the operation (AG + In)t is performed in a Boolean algebra.

0.1.4.4 Dual graph

We define here the notion of dual graph, which is an operation defined on plane graphs. A plane
graph is the drawing of a graph in the plane such that all the intersecting points of the lines of the
drawing represent a vertex. So the lines do not cross except in the vertices of the graph.

More formally, plane graphs rely on an embedding on a surface, which we hereby define.

Definition 0.1.17. Let G be a graph.

1. Given a surface Σ, an embedding of G on Σ is a mapping from V (G) to a subset of points
P of Σ, and from E(G) to a subset of lines L of Σ, where a line is an homeomorphic image
of the interval [0, 1]. Moreover, each line ` ∈ L must contain exactly two points p1, p2 ∈ P ,
which lie on its extremities (the images of 0 and 1), and every intersecting point p ∈ `1 ∩ `2

between two lines `1, `2 ∈ L must be a point of P .

2. The graph G is planar if there exists an embedding of G on the Euclidian plane R2. Such
an embedding is called a plane graph.

The motivations behind plane graphs are multiple. Being able to represent a graph with no
crossings tends to enhance the readability of the drawing, without mentioning the numerous real-
life applications which can be thought of. For instance, in electronics, the integrated circuit designs
must satisfy the property that two paths never cross.

Graphs are identified by two kinds of objects, their vertices and their edges. For plane graphs,
a third kind of object appears, those are the faces of the graph.

Definition 0.1.18. A fundamental (and surprisingly highly non trivial) result from topology,
known as the Jordan curve theorem, states that any Jordan curve — a non-self-intersecting con-
tinuous loop in the plane — separates the plane into exactly two regions, its interior (bounded)
and its exterior (unbounded).

1. Given a plane graph G with point set P and line set L, the faces of G are the (arc-wise)
connected regions of R2 \ L (including the unbounded exterior one). We denote F (G) the
set of faces of G.

2. Each face f ∈ F (G) is delimited by a Jordan curve, which we call the boundary of f . The
lines and points belonging to the boundary of f are said to be incident to f . We denote
respectively E(f) and V (f) the set of lines and points incident to f .
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3. Note that, given a line ` of a plane graph, there is an incident face on each of its two sides.
When the same face f is incident to ` on each sides, we say that ` is incident to f with
multiplicity 2. The degree degG(f) of a face f in a plane graph G is the number of lines of
G incident to f , counted with their multiplicity. Two faces are adjacent when they have a
common incident line.

Remark 0.1.16. In a given connected plane graph G, if a line is incident to a face with multiplicity
2, then it is a bridge — its removal disconnects G. In a 2-edge-connected plane graph G, any face
f ∈ F (G) is an induced cycle. However, not all induced cycles in a plane graph form a face.

Definition 0.1.19. Given a 3-edge-connected plane graph G, the dual graph of G, denoted G∗, is
obtained by considering the faces of G as the vertices in G∗, and adding an edge in G∗ between all
pairs of adjacent faces in G. This is the intersection graph of {E(f) | f ∈ F (G)};

V (G∗) = F (G), and

E(G∗) =

{
{f, f ′} ∈

(
F (G)

2

) ∣∣∣∣ E(f) ∩ E(f ′) 6= ∅
}
.

Given two 3-edge-connected planar graphs G and H, we say that H is dual to G if there exists an
embedding G̃ of G on R2 such that H = G̃∗.

Figure 0.1.23: The wheel is its own dual.

Remark 0.1.17.

1. The dual of a graph depends on its embedding. So the dual operation is properly defined
only on plane graphs, and not on planar graphs.

2. The dual relation is a symmetric relation on the class of 3-edge-connected planar graphs.
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3. We need to restrict the dual operation to 3-edge-connected planar graphs in order to remain
within the class of simple loopless graphs. Indeed, every bridge of a planar graph G would
produce a loop in G∗, and every cut of size 2 of G would produce a multiple edge in G∗.

0.1.4.5 Graph additions

Given a set of graphs, we might be interested in gluing them together to form one larger graph.
There are several notable operations which perform this.

Disjoint union. The disjoint union of two graph G1 and G2 is denoted G1∪G2. After a potential
relabelling of V (G2) in such a way that V (G1) and V (G2) are disjoint, it is defined by

V (G1 ∪G2) = V (G1) ∪ V (G2),

E(G1 ∪G2) = E(G1) ∪ E(G2).

So the disjoint union of two graphs is obtained simply by putting a drawing of G1 and a drawing
of G2 side by side.

Remark 0.1.18. Any graph G is the disjoint union of its connected components.

The iterated disjoint union of a graph G with itself is denoted nG for n− 1 iterations.

Join. The join of two graphs G1 and G2 is the complementary operation to the disjoint union,
and denoted G1 ∧G2. It is obtained by adding all edges between V (G1) and V (G2) in the disjoint
union of G1 and G2. So, once V (G1) is disjoint from V (G2),

V (G1 ∧G2) = V (G1) ∪ V (G2),

E(G1 ∧G2) = E(G1) ∪ E(G2) ∪ V (G1)× V (G2).

Remark 0.1.19.

1. ∀G1, G2, G1 ∧G2
∼= G1 ∪G2.

2. The complete biparte graph Kn,m is the join of two independent sets of size n and m.

3. ∀n ≥ 1, Kn+1
∼= Kn ∧K1.

0.1.4.6 Graph products

While an addition of two graphs G1 and G2 on n1 and n2 vertices returns a graph on n1 + n2

vertices, a product returns a graph on n1 × n2 vertices. Actually, the vertex set of any graph
product of G1 and G2 is the Cartesian product of V (G1) and V (G2), and so its edge set is included
in
(
V (G1)×V (G2)

2

)
.

Graph products are often interesting in order to obtain, from one graph with an interesting
property, an infinite family of graphs with the desired property. We present here the four more
widely used graph products — though there exist several other ones with nice properties —, the
Cartesian product , the strong product , the tensor product , and the lexicographical product .

Given two graphs G1 and G2, a graph product on G1 and G2 is entirely defined through its
adjacency relation between two pairs vertices (u1, u2), (v1, v2) ∈ V (G1)× V (G2).
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Cartesian product. G1 �G2

(u1, u2) ∼G1�G2 (v1, v2) ⇐⇒ (u1 = v1 and u2 ∼G2 v2)
or (u1 ∼G1 v1 and u2 = v2)

As mentioned in Section 0.1.2, bidimensional square grids are defined as the Cartesian product
of two paths, and (n+1)-dimensional grids as the Cartesian product of an n-dimensional grid with
a path. So the hypercube Qn, which is no more than an n-dimensional square grid of dimension
2× . . .× 2, is the Cartesian product of n edges;

Qn = K2 � . . .�K2︸ ︷︷ ︸
n factors

= K�n
2 .

Remark 0.1.20. The line graph of a complete bipartite graph is the Cartesian product of two
complete graphs;

∀n,m, L(Km,n) = Km �Kn.

Strong product. G1 �G2

(u1, u2) ∼G1�G2 (v1, v2) ⇐⇒
(u1 = v1 and u2 ∼G2 v2)

or (u1 ∼G1 v1 and u2 = v2)
or (u1 ∼G1 v1 and u2 ∼G2 v2)

Remark 0.1.21. The balanced complete k-partite graph Kk∗n is the strong product of the complete
graph Kk with an independent set of size n.

Tensor product. (or categorical product) G1 ×G2

(u1, u2) ∼G1×G2 (v1, v2) ⇐⇒ u1 ∼G1 v1 and u2 ∼G2 v2

Remark 0.1.22. The symbol for these three first products actually corresponds to a drawing of the
graph obtained by the product of two edges;

K2 �K2 = C4,

K2 �K2 = K4,

K2 ×K2 = 2K2.

Lexicographical product. G1 ·G2 or G1[G2]

(u1, u2) ∼G1[G2] (v1, v2) ⇐⇒ u1 ∼G1 v1

or (u1 = v1 and u2 ∼G2 v2)

Remark 0.1.23. This product is not commutative, contrary to the previous ones. This is why the
asymmetric notation G1[G2] is sometimes used. It is however associative, which justifies the use
of the notation G1 ·G2.
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0.1.5 Graph classes

Let me end with the biological metaphor on graphs by introducing the main families of notable
graphs. In biology, a lot of animal species remain unknown. Likewise in graph theory, an over-
whelming majority of graphs are unknown from the community, some of which might have prop-
erties which are widely and unsuccessfully looked for. As previously mentioned, the number of
different graphs grows so quickly (in a quadratic exponential) that it is impossible to study them
all. Instead, a solution is to gather all graphs sharing some common attributes into families of
graphs, and then studying all the graphs from such a family at once. What is of importance
is therefore to characterise which attributes are determinant when studying some parameter or
problem on graphs, in order to extract meaningful related families of graphs.

0.1.5.1 Trees and forests

We begin with the family of graphs which is arguably the easiest to consider, namely the forests.
A lot of really hard problems on graphs become easy to solve on forests, and an almost systematic
first step in the direction of solving a problem on graphs is to solve it for forests.

Definition 0.1.20.

1. A forest F is an acyclic graph, so a graph which does not contain any subgraph isomorphic
to Cn, for any length n.

2. A tree T is a connected forest, so a forest is a disjoint union of trees.

3. In a tree, a leaf is any vertex of degree 1.

4. A subtree of a tree T is a connected subgraph of T .

5. A rooted tree T is a tree given with a special vertex r ∈ V (T ), the root of T . In a rooted tree
T , the vertex set V (T ) is usually considered together with a partition (V0, . . . , Vp), where
V0 = {r}, and Vi is the set of vertices at distance i from r in T , for any i ≥ 1. Each Vi is
called the layer at depth i of T . The depth p of the tree is the maximum depth of its layers,
which corresponds to the eccentricity of its root r.

6. Given a vertex v ∈ Vi(T ) at depth i in a rooted tree T , the children of v are its neighbours at
depth i+ 1, that is N(v) ∩ Vi+1. When i > 0, the vertex v has exactly one other neighbour,
which lies at depth i− 1; we call it the parent of v.

7. Given a rooted tree T and one of its nodes x, the set of descendants of x is either {x} when
x is a leaf, or the union of the descendants of all the children of x, together with x. The
set of ancestors of x is either {x} if x is the root, or the set of ancestors of the parent of x,
together with x.

8. In a rooted tree, a branch is a path from the root to some leaf.

Remark 0.1.24.

1. A tree T on n vertices contains exactly n − 1 edges. As a consequence, a forest F on n
vertices, composed of r connected components, contains exactly n− r edges.

2. Every tree on at least two vertices contains at least two leaves.
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3. In a rooted tree T , the ancestors of any node x induce a path from the root to x. The
descendants of x induce a subtree of T rooted in x.

Rooted trees are inescapable in the domain of data structures, where we store data into the
nodes. Indeed, they have a really basic inductive definition which makes them really convenient
to use in most programming languages.

type ’ a t r e e = Node of ’ a ∗ ’ a t r e e l i s t

Moreover, most classical hard problems on graphs can be solved on trees in linear time.

Remark 0.1.25. Every tree T contains a maximum independent set containing all its leaves.
Indeed, in any maximum (and therefore maximal) independent set I, given some leaf v, either

v ∈ I or N(v)∩ I 6= ∅. But since v is a leaf, it has only one neighbour, its father u. So, assuming
that v /∈ I, the set I−u+v is also a maximum independent set of T . Doing this for every leaf, if we
denote L(T ) the set of leaves of T , we infer that I \N(L(T ))∪L(T ) is a maximum independent set
of T , containing all its leaves. We can then use this result in order to compute the independence
number of any tree in linear time.

l et independence number t =
l et rec aux = function
| Node (x , c h i l d r e n ) −> l et ( ch i ld taken , r e s ) = L i s t . f o l d l e f t

( fun (b , r ) t ’ −> l et (b ’ , r ’ ) = aux t ’ in (b | | b ’ , r+r ’ ) )
( f a l s e , 0 ) c h i l d r e n in

i f c h i l d t a k e n then ( f a l s e , r e s )
else ( true , r e s +1) in

snd ( aux t )

In the domain of recursive programming, trees are also the structure behind the recursive calls
of recursive functions.

0.1.5.2 Bipartite graphs

We next consider the class of bipartite graphs, which contains all the forests.

Definition 0.1.21. A graph G of n vertices is bipartite if it appears as a subgraph of Kn,n.
Equivalently, its vertex set V (G) can be partitioned into two independent sets. A bipartite graph
is usually denoted G = (U, V,E), where (U, V ) is the bipartition of its vertices into two independent
sets, and E ⊆ U × V is its set of edges.

Remark 0.1.26. Bipartite graph are easy to recognise.

1. Bipartite graphs are exactly the class of graphs not containing any cycle of odd length as a
subgraph. They can be recognised in linear time.

2. Trees and forests are bipartite graphs, since they are acyclic.

Lemma 0.1.4. Every graph G with m edges contains a bipartite subgraph H with at least
⌈
m
2

⌉
edges.

Proof. Let H = (X, Y,E) be a bipartite subgraph of G, such that X ∪ Y = V (G), and E(H) =
(X × Y ) ∩ E(G) is of maximum size.
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Claim.

∀v ∈ V (H), degH(v) ≥ degG(V )

2

This claim implies the desired result through an application of the handshaking lemma;

e(H) =
1

2

∑
v∈V (H)

degH(v) ≥ 1

2

∑
v∈V (G)

degG(V )

2
=
m

2
.

There remains to prove the claim. Let us assume otherwise that there exists some v ∈ V (H) such
that degH(v) < degG(v)/2 — so in particular degG(v) > 0. Without loss of generality, we might
assume that v ∈ X.

Let X ′ = X − v, Y ′ = Y + v, and H ′ = (X ′, Y ′, (X ′ × Y ′) ∩ E(G)). We observe that

e(H ′) = e(H) + degG(v)− 2 degH(v) > e(H),

which contradicts the choice of H.

An application of lemma 0.1.4 together with lemma 0.1.1 implies that every graph G of average
degree d contains a bipartite subgraph of minimum degree at least

⌈
d
4

⌉
.

0.1.5.3 Planar and plane graphs

We have already defined planar and plane graphs in Section 0.1.4.4. As mentioned in that section,
planar graphs are essential in many applications, and therefore constitute an appealing family of
graphs to analyse. They also have really specific properties, which mainly arise from a theorem of
Euler which exhibits a correlation between their number of vertices, edges, and faces.

Theorem 0.1.5 (Euler’s formula). Let G be a connected plane graph on n vertices, m edges, and
f faces. Then

n+ f = m+ 2. (1)

This formula has numerous consequences. The general method which exploits this formula in
order to prove results on planar graphs is called the discharging method, which we illustrate in
Section 0.3.4. One of the most immediate consequences of Euler’s formula is that the average
degree of a planar graph is bounded.

Corollary 0.1.5.1. The average degree of a planar graph of girth at least g is less than
2g

g − 2
.

Proof. Let G be a simple loopless plane graph on n vertices, m edges, and f faces. First note that
the handshaking lemma can be generalised to hold also when summing the degrees of the faces of
a plane graph; ∑

f∈F (G)

degG(f) = 2m.

Indeed, each edge is either incident to two faces f and f ′, and counted once in degG(f) and once
in degG(f ′), or it is incident to only one face f with multiplicity 2, and counted twice in degG(f).

Now, every face is of degree at least girth(G) ≥ g. So∑
f∈F (G)

degG(f) ≥ gf.
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It follows that f ≤ 2m/g. Substituting this into Euler’s formula (1), we obtain

m+ 2 ≤ n+
2

g
m

g − 2

g
m+ 2 ≤ n

ad(G) =
2m

n
≤ 2g

g − 2
− 4

n
<

2g

g − 2
.

A consequence is that every planar graph contains a vertex of degree at most 5. Since every
subgraph of a planar graph is also a planar graph (being planar is a hereditary property), the
degeneracy of a planar graph is therefore always at most 5.

Theorem 0.1.6. For every planar graph G,

δ∗(G) ≤ 5,

and if moreover G is triangle-free (and so of girth g ≥ 4),

δ∗(G) ≤ 3.

0.1.5.4 H-free graphs

Given a fixed graph H, the class of H-free graphs is the set of graphs which do not contain H as
a subgraph, or as an induced subgraph depending on the context. This also generalises to F -free
graphs, where F is a (possibly infinite) family of graphs.

Remark 0.1.27. A lot of graph families can be expressed through H-free graphs.

1. Forests are the same as {Cn | n ≥ 3}-free graphs.

2. Bipartite graphs are the same as {C2k+1 | k ≥ 1}-free graphs.

3. Graphs of girth at least g are the same as {Cn | n < g}-free graphs.

4. Graphs of maximum degree at most ∆ are the same as K1,∆+1-free graphs.

5. Graphs on n vertices of minimum degree at least δ are the same as complements of K1,n−δ+1-
free graphs on n vertices.

6. Line graphs are the same as induced FL-free graphs, for some family FL of 9 minimal graphs
which was identified by Beineke in 1968 [12].

0.1.5.5 Random graphs

The last class of graphs I wish to highlight is the one of random graphs , and more specifically the
widely used Erdős-Rényi model G(n, p).
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Figure 0.1.24: The 9 forbidden induced subgraphs in line graphs

Definition 0.1.22. Given an integer n, and some parameter p ∈ (0, 1), the Erdős-Rényi model
G(n, p) returns a random graph on n vertices, where each pair of vertices (u, v) induces an edge
with probability p. Given (u, v) ∈

(
[n]
2

)
, let Xuv be the random variable counting the number of

edges between u and v (so either Xuv = 0 or Xuv = 1). All variables Xuv are independent and
identically distributed random variables following a Bernoulli distribution of parameter p.

By definition, any graph on n vertices can be drawn from the Erdős-Rényi model, moreover
with equal probability if p = 1/2. What interest could a class containing all graphs possibly have?

When considering random graphs from G(n, 1/2), we are not seeking for universal properties
which would hold for all outcomes of the model, but instead we are interested in properties which
would hold asymptotically almost surely for a graph drawn from this model, so with probability
tending to 1 as n grows to infinity. By studying this model, we are able to find a surprisingly large
amount of properties which hold for all but a negligible fraction of graphs on n vertices. Through
the so-called probabilistic method, random graphs help us also prove the existence of graphs with
certain peculiar properties which we have no idea how to construct.

When p is a positive constant independent of n, graphs drawn from G(n, p) are called dense
graphs , in the sense that their number of edges is asymptotically almost surely a constant fraction
of the maximum possible number of edges in a graph on n vertices. But it can also be of interest
to consider graphs where p is a decreasing function of n, for instance p = d/n for some constant
d. Graphs drawn from G(n, p) when p = on→∞(1) are called sparse graphs , in the sense that
asymptotically almost surely only a negligible fraction of all possible edges are part of their edge
set.

Remark 0.1.28. Let ε > 0, and G be drawn from G(n, d/n). The degrees in G all follow the
binomial distribution Bin(n− 1, p). So asymptotically almost surely,

δ(G) ≥ (1− ε)d and ∆(G) ≤ (1 + ε)d.
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0.2 Graph Colouring

The previous section was just a glimpse of what graph theory is about. It covers almost the
whole range of mathematical domains, from algebra to topology, and can be considered in so many
different contexts that no one can decently claim to be a specialist of the whole domain of graph
theory.

Researchers tend to focus mainly on two kinds of graphs. The first kind are graphs which cap-
ture the combinatorial structure of some existing network, and whose properties directly translate
into properties of the network. The analysis of those graphs is always done with the applications
on the network in mind, in order to understand its behaviour, to target its weaknesses, or to solve
related algorithmic problems. The second kind are graphs which are artificially constructed as
tools which describe combinatorial problem in an unified structure, therefore more convenient to
use. All the known results on graphs can now be applied in order to dissect the problem, and
sometimes to solve it in an unexpected and elegant way.

This thesis focuses on the second kind of graphs. And on these graphs, we focus on an innocent
looking problem — it could even be considered a game — which consists in colouring their vertices
following the simplest possible rule. The kind of game you could imagine asking a child to play.

0.2.1 Presentation and definition

Definition 0.2.1. Let G be a graph.

1. A k-colouring of G is a function c : V (G) → [k]. This can be seen as a function which
associates to every vertex v ∈ V (G) a colour among a palette of k possible ones. A partial
colouring of G is a colouring of a proper induced subgraph of G.

2. A colouring c of G is said to be proper whenever it follows the rule that no edge in G has
two extremities of the same colour;

∀uv ∈ E(G), c(u) 6= c(v).

When there exists a proper k-colouring of G, we say that G is k-colourable.

3. The minimum k such that there exists a proper k-colouring of G is called the chromatic
number of G, denoted χ(G).

4. For every colour i ∈ [k] used in some k-colouring c of G, the subset of vertices c−1({i})
coloured with colour i is called a colour class , or monochromatic class of c. The colour
classes of c yield a partition of V (G), and if c is proper, every colour class is an independent
set of G.

Figure 0.2.1: A proper 3-colouring of C5.

Remark 0.2.1. There are several equivalent possible definitions of a proper k-colouring of a given
graph G on n vertices. A proper k-colouring of G is isomorphic to
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(i) a partition of V (G) into k independent sets,

(ii) a graph homomorphism from G to the complete graph Kk,

(iii) a (maximum) independent set of size n of the Cartesian product G�Kk.

Note also that G is k-colourable if and only if it is a subgraph of the complete k-partite graph
Kk∗n. In particular, the class of bipartite graphs is exactly the class of 2-colourable graphs.

Remark 0.2.2. Being k-colourable is a hereditary property;

∀H ⊆ G, χ(H) ≤ χ(G);

0.2.2 What for?

To anyone not familiar with graph colouring, the concept might appear somewhat arbitrary. In-
deed, the formal definition could give the picture of a combinatorial game, like many others, which
is only worth as a mind entertaining problem.

Sudoku. To be entirely honest, the entertaining aspect of solving some colouration problem by
hand has already been demonstrated. This is what solving a Sudoku grid consists in! A Sudoku
grid has an underlying graph on 81 vertices — each vertex is a cell of the Sudoku grid — such that
all 9 cells lying on a common line, column, or 3 × 3 square form a clique. This underlying graph
is depicted in Figure 0.2.2. Solving a Sudoku grid consists in, given some partial 9-colouring of its
underlying graph, completing it into a proper 9-colouring of the whole graph.

Figure 0.2.2: The underlying graph of a Sudoku grid
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Real life problem. It is now time to illustrate the real strength of the k-colouring problem. We
are going to see with an example — which is one among many others — how being able to solve
the k-colouring problem on graphs can yield a solution to a real life situation.

Suppose that you are a professor willing to give an assignment to your students. You know
that your students have a history of sharing their results together, among friends. In order to
avoid that, you intend to write several subjects, so that any two friends are assigned a different
one. You are therefore wondering how many different subjects you will need to write at least, and
how you should assign them to your students. We will assume that you have a plain knowledge
of the friendship relation among your students, for instance through a thorough analysis of their
activities on social media.

Let G be the friendship graph of your students, that is a graph where each vertex is labeled
with one of your students’ name, and two vertices share an edge whenever the two corresponding
students are friends on some social network. The solution to your problem is the chromatic
number χ(G) of G. A proper k-colouring yields a way to assign one among k subjects to each of
your students, so that two friends are assigned a diffent subject. The chromatic number of G is
the minimum such k, so the number of different subjects that you need to write.

It often happens that the graphs considered in these situations are well-structured. Namely,
they can sometimes be constructed through a combination of the operations defined in Sec-
tion 0.1.4. Let us consider an illustration of this hereafter.

After some successful assignments, you might notice that the students are beginning to share
their answers once again. Aware of your trick, they have organised together so that every student
is helping each of its friends finding someone with the same subject. As a consequence, every two
students having a common friend are able to share their answers whenever they are assigned the
same subject. In order to avoid that, you need to assign different subjects to all students having a
common friend; these are the vertices linked by a path of length 2 in the friendship graph G. The
new solution to your problem is the chromatic number χ(G2) of the distance-2 graph of G.

Let us now consider a slightly different situation. All your students have to make d different
assignments, which they can choose freely among n different ones. Every assignment needs the use
of a very special machine, and you dispose of only one of each. Each machine can be used by only
one student at a time. You will need to make several sessions, during each of which every student
works on a different machine. You wonder how many sessions you will need to organise.

Let G = (U, V,E) be the bipartite graph where each vertex u ∈ U is labelled with one student,
each vertex v ∈ V is labelled with one machine, an there is an edge uv ∈ E if the student u needs
to work with the machine v. Note that the degree of every vertex u ∈ U is degG(u) = d. The
solution to your new problem is the chromatic number χ(L(G)) of the line graph of G. Indeed, the
d edges incident to some student correspond to the d assignments he needs to perform. A student
can perform only one assignment per session, and a machine can be use by only one student per
session, therefore every two incident edges cannot be part of the same session, so they cannot be
of the same colour.

Those are merely two illustrative examples; one might easily imagine other practical scenarios
in other contexts — other examples will be presented later in this thesis. Actually, any given
assignment problem with constraints is very likely to be expressible into the colouring problem
on an associated graph. The occasions where you might be confronted to a problem equivalent
to a graph colouring problem may arise at any time, in any situation. Having some knowledge,
expertise, and efficient tools to deal with graph colouring problems is of importance; this thesis
intends to be one more building block in this domain.
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0.2.3 Computing the chromatic number

Backtracking algorithm. A first way to compute a colouring of a graph is through a back-
tracking algorithm.

exception Uncolourable
(∗ l i s t s . ( v ) i s the l i s t o f a v a i l a b l e c o l o u r s f o r v e r t e x v ∗)
l et rec co l ou r l i s t s graph =

l et n = Graph . s i z e graph in

(∗ r e t u r n s the v e r t e x wi th s m a l l e s t l i s t o f s i z e > 1 ∗)
l et next l i s t s =

l et rec aux min v min v =
i f i = n then v min
else let s i z e = L i s t . l ength l i s t s . ( v ) in
i f s i z e < min && s i z e > 1 then aux s i z e v ( v+1)
else aux min v min ( v+1) in

aux max int (−1) 0 in

(∗ D e l e t e s the c o l o u r o f v from the l i s t s o f a l l i t s ne ighbours ∗)
l et rec propagat ion l i s t s v =

l et c = L i s t . hd l i s t s . ( v ) in
L i s t . i t e r

( fun u −>
l i s t s . ( u ) <− L i s t . f i l t e r (<> c ) l i s t s . ( u ) ;
l et s i z e = L i s t . l ength l i s t s . ( u ) in
i f s i z e = 0 then r a i s e Uncolourable
else i f s i z e = 1 then propagat ion l i s t s u

) ( Graph . ne ighbours graph v ) in

(∗ Finds a p o s s i b l e c o l o u r f o r v e r t e x v ∗)
l et rec a f f e c t a t i o n l i s t s v =

l et l 0 = Array . copy l i s t s in
let c = L i s t . hd l i s t s . ( v ) in
try

l i s t s . ( i ) <− [ c ] ;
propagat ion l i s t s v ;
co l ou r l i s t s graph

with Uncolorable −>
l 0 . ( v ) <− L i s t . t l l 0 . ( v ) ;
a f f e c t a t i o n l 0 v in

let v = next l i s t s in
i f v = −1 then Array .map L i s t . hd l i s t s
else a f f e c t a t i o n l i s t s v
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Linear program. The chromatic number χ(G) of a graph G is naturally defined as the solution
of an integer linear program with one variable wI for every of its maximal independent sets I ∈
Imax(G).

χ(G) = min
∑

I∈Imax(G)

wI ,

such that


∀v ∈ V (G),

∑
I∈Imax(G)

v∈I

wI ≥ 1,

∀I ∈ Imax(G), wI ∈ {0, 1}.

(2)

Consider the definition of the chromatic number of G as a partition of its vertex set V (G) into
as few independent sets as possible. The variable wI associated to a given maximal independent
set I ∈ I(G) can have two possible values, 1 if I is a part of the aforementioned partition, and
0 otherwise. So every assignment I ∈ Imax(G) 7→ wI ∈ {0, 1} corresponds to a collection of
maximal independent sets of G, and if every constraint of the Linear Program (2) is satisfied,
this collection covers the set of vertices of G. The size of this collection is given by the objective
function, which is required to be minimised. In this collection, some vertex v ∈ V (G) might be
part of several independent sets; removing every such v from all but one of these independent sets
yields a partition of V (G) into (non maximal) independent sets, thus a proper colouring of G.

The number of constraints of the Linear Program (2) is n(G), and its number of variables is
|Imax(G)|, which might be exponential in n(G) — the number of maximal independent sets of a
graph G on n vertices can be as large as 3n/3, which is reached when G is a disjoint union of n/3
triangles [94].

Logical formulation. It is possible to express the k-colouring problem for a given graph G
through the following logical formula. ∧

v∈V (G)

∨
i∈[k]

xv,i

 ∧
 ∧
uv∈E(G)

∧
i∈[k]

xu,i ∨ xv,i

 (3)

For every v ∈ V (G) and i ∈ [k], the boolean variable xv,i is true if the vertex v is coloured with
colour i, and false otherwise. The first half of formula (3) is true only when every vertex in V (G)
is coloured with some colour in [k], and the second half of the formula is true only when no edge
has the same colour appearing on both its extremities.

There exist several solvers in order to attack such a logical formula. These algorithms are
intensively worked on, with increasingly efficient heuristics, so they often provide a cheap way of
having reasonably fast programs in order to solve the k-colouring problem.

0.2.4 A few words on NP-complete problems

All the methods presented in Section 0.2.3 in order to compute the chromatic number of a graph
have an exponential complexity in the size of the graph in the general setting. There is almost no
hope of finding any algorithm of polynomial complexity computing the chromatic number of any
graph, since it is strongly believed by the scientific community that P 6= NP, while the k-colouring
problem is NP-complete.
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Definition 0.2.2. We define the two fundamental complexity classes P and NP.

1. The complexity class P contains all decision problems which can be solved in polynomial
time, so in time less than nc for some constant c ∈ R on any instance of size n.

2. A given decision problem p is in NP if, on any instance x of size n, it holds that

(a) The return value of p(x) is either 0 or 1.

(b) If p(x) = 1, there exists a certificate y of this answer such that, given y, it can be
checked in polynomial time that p(x) = 1 is a valid answer.

3. A given problem p is polynomially reducible to a problem q if, given any instance x of size n
of p, it is possible to compute in polynomial time an instance y of size less than nc (for some
constant c ∈ R) such that p(x) = q(y). We denote this fact p ≤P q.

4. A given problem p ∈ NP is NP-complete if it is maximal with respect to ≤P;

∀q ∈ NP, q ≤P p.

5. A given problem p is NP-hard if some NP-complete problem is polynomially reducible to it.

So NP-complete problems are the hardest to solve among the ones in NP. Being able to solve
one efficiently would imply that every problem in NP can be solved efficiently. In particular, if
there exists a polynomial-time algorithm solving some NP-complete problem, then P = NP.

The first problem proven to be NP-complete is the SAT problem, which decides whether a given
boolean formula can be true on some instance of its boolean variables. The k-colouring problem,
which consists in deciding, given a graph G, whether or not χ(G) ≤ k, is also an NP-complete
problem when k ≥ 3 — the certificate of the k-colouring problem is a proper k-colouring of G,
whose validity can be checked easily in time linear in the number of edges of G. So computing the
chromatic number of a graph is an NP-hard problem.

With this in mind, one could be pessimistic about the graph colouring problem. Since it is
NP-complete, and therefore likely impossible to solve in polyomial time, then it is impractical to
even consider it for graphs on more than a few dozen vertices. A theoretical researcher has the
opposite opinion; this is in order to circumvent those seemingly unsolvable issues that research
work is needed. The NP-completeness of the colouring problem is — among other things — what
makes the content of this thesis relevant.

0.2.5 Approaching the chromatic number

Since computing the exact value of the chromatic number of a given graph G seems out of reach
in the general case, a first step would be to bound it in terms of other parameters of the graph G.

0.2.5.1 Naive lower bounds

In a proper colouring of the complete graph Kn, every vertex must have a colour distinct from
the others, since they are all pairwise adjacent. So χ(Kn) = n, and any graph G having Kn as a
subgraph needs at least n colours in a proper colouring;

∀G, χ(G) ≥ ω(G).
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A proper k-colouring of G yields a partition of V (G) into independent sets. Since each inde-
pendent set is of size at most α(G), it means that k × α(G) ≥ |V (G)|;

∀G, χ(G) ≥ n(G)

α(G)
.

These two lower bounds are sufficient in many applications in order to give a good estimate
of the chromatic number of classical graphs. However, the chromatic number can be arbitrarily
larger than both of them.

Mycielski graphs. Given a graph G, the Mycielskian of G, denoted M(G), is obtained by
adding all the edges of G inside one of the copies of V (G) in G ×K2, and joining all vertices of
the other copy to some new vertex. The Mycielski graph Mk is defined inductively by M1 = K1,
M2 = K2, and Mn+1 = M(Mn).

(a) M1 = K1 (b) M2 = K2 (c) M3 = C5 (d) M4: Grötzsch graph

Figure 0.2.3: The first steps of the Mycielskian construction

The following lemma is helpful in order to analyse the chromatic number of the Mycielski
graphs.

Lemma 0.2.1. Let G be a graph of chromatic number k, and c be a proper k-colouring of G. For
every colour i ∈ [k], there exists some vertex vi ∈ V (G) such that c(vi) = i and the set of colours
appearing in N(vi) is c(N(vi)) = [k]− i.

Proof. Let us assume otherwise that, for some colour i, every vertex v such that c(v) = i misses
a colour av ∈ [k] − i in its neighbourhood. Let us recolour every such vertex v with colour av,
thus creating some colouring c′ of G. Since the recoloured vertices where the ones coloured with
i by c, they form an independent set, and so after the recolouring process the colours in their
neighbourhood remain unchanged. So c′ is a proper colouring of G, and c′ uses colours only from
[k]− i, so k − 1 different ones. This contradicts the fact that χ(G) = k.

Lemma 0.2.2. The Mycielskian construction satisfies two useful properties.

1. If G is triangle-free, then so is M(G).

2. χ(M(G)) = χ(G) + 1

As a consequence, Mk is a triangle-free graph of chromatic number k, for every k ≥ 1.

Proof. Let G be a triangle-free graph of chromatic number k, and H = M(G).

1. Assume for the sake of contradiction that H contains a triangle T = (u, v, w). Let x be the
new vertex added to the vertex set of G×K2 in order to obtain V (H), and let V0 and V1 be
the two copies of V (G) in G ×K2. Assume that V0 is the one inducing G, and V1 the one
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inducing an independent set. By construction, the neighbourhood of v is the independent
set V1, and therefore v is contained in no triangle. Moreover, since G is triangle-free, at least
one vertex from T lies outside of V0, and since V1 is an independent set, at most one vertex
from T lies in V1. So exactly two vertices of T (say u and v) lie in V0, and one (say w) in V1.
Let u′, v′, w′ be the corresponding copies of those vertices in G. By definition of the tensor
product ×, it means that u′ and v′ are neighbours of w′ in G, and u′v′ ∈ E(G). This yields
a triangle T ′ = (u′, v′, w′) in G, a contradiction.

2. The fact that χ(H) ≤ χ(G)+1 is straightforward ; it suffices, given a proper k-colouring c of
G, to use it to colour the two copies of V (G) is H, and to use a new colour for the last vertex
x. In order to prove the other side of the inequality, assume for the sake of contradiction
that there exists a proper k-colouring c of H. c induces a proper colouring of G on V0.
By applying Lemma 0.2.1 on the graph H[V0] and the colour c(x), there exists some vertex
v0 ∈ V0 such that c(v0) = c(x) and all other colours appear in NH(v0) ∩ V0. Let v1 ∈ V1 be
the corresponding copy of v0 in V1. By construction, NH(v0) ∩ V0 = NH(v1) ∩ V0, and since
moreover x ∈ NH(v1), all colours from c appear in NH(v1), a contradiction.

We have just seen that there exist graphs with clique number 2, and arbitrarily large chromatic
number. Before going further, let us mention this other remarkable property of the Mycielski
graph.

Theorem 0.2.3 (Cropper, Gyárfás, Lehel, 2006 [30]). Every connected triangle-free graph on n
vertices is contained as an induced subgraph in Mn.

Kneser graphs. For a given graph G, it is possible to capture both lower bounds ω(G) and
n(G)/α(G) of χ(G) in a stronger lower bound, the Hall ratio of G, denoted ρ(G), and defined by

ρ(G) = max
H⊆G

n(H)

α(H)
≥ max

(
n(G)

α(G)
, ω(G)

)
.

Because being k-colourable is a hereditary property — we can also say that the chromatic number
is monotone — it holds that

∀G, χ(G) ≥ ρ(G),

but again the chromatic number of a graph can be arbitrarily larger than its Hall ratio. This is
the case for Kneser graphs.

Theorem 0.2.4 (Lovász, 1978 [86]). For every k ≥ 1 and n ≥ 2k − 1, the chromatic number of
the Kneser graph KGn,k is n− 2k + 2.

Theorem 0.2.5 (Erdős-Ko-Rado, 1961 [46]). Let A ⊆
(

[n]
k

)
be a family of pairwise intersecting

subsets on k elements of [n]. Then

|A| ≤
(
n− 1

k − 1

)
,

with equality only when A consists of all subsets containing a common element x ∈ [n], if n > 2k.
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Note that an independent set in KGn,k is precisely a family of pairwise intersecting subsets, so
a consequence of Lemma 0.2.5 is that

α(KGn,k) =

(
n− 1

k − 1

)
,

and so
n(KGn,k)

α(KGn,k)
=

(
n
k

)(
n−1
k−1

) =
n

k
.

Now, since every family of sets containing a common element x ∈ [n] forms a maximum
independent set in KGn,k, in order to decrease the independence number of KGn,k by some constant
i, one needs to remove i sets containing x from V (KGn,k), for every x ∈ [n]. Consequently, the
multiset obtained as the union of all the removed sets should have cardinality at least i × n. It
means that at least

⌈
in
k

⌉
vertices must have been removed from KGn,k;

ρ(KGn,k) ≤ max
i∈[n]

n−
⌈
in
k

⌉
k − i

=
n

k
.

For every k ≥ 1, the Kneser graph KG3k−1,k has Hall ratio 3 − 1/k, and chromatic number
k + 1. This is another example of a triangle-free graph of arbitrarily large chromatic number, and
moreover with bounded Hall ratio.

0.2.5.2 Naive upper bounds

It is easy to bound from above the chromatic number of a graph G in terms of its maximum degree
by considering a greedy colouring algorithm. The idea is to sequentially colour the vertices of G,
assigning the smaller colour which does not appear in the neighbourhood of the considered vertex
at each step when there exists one, or adding a new colour to the colouring otherwise.

Algorithm 2 Greedy colouring

Require: Some graph G with V (G) = {v1, . . . , vn}
Ensure: c is a proper k-colouring of G
k ← 1, i← 1
while i ≤ n do

if c(NG(vi)) = [k] then
k ← k + 1
c(vi)← k + 1

else
c(vi)← min [k] \ c(NG(vi))

end if
i← i+ 1

end while
Return c

Lemma 0.2.6. The proper colouring returned by the greedy colouring applied on any given graph
G uses at most ∆(G) + 1 colours.
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Proof. The variable k counting the number of colours used by c during the execution of the
algorithm is incremented only when c(N(v)) = [k], for some vertex v ∈ V (G). When this happens,
in particular, ∆(G) ≥ |N(v)| ≥ k. So, if k reaches the value ∆(G) + 1, it cannot be further
incremented.

Note that the quality of the colouring returned by the greedy algorithm depends highly on
the order in which the vertices of the graph G are considered. In particular, for some optimal
colouring c of G, if the vertices are ordered such that their assigned colour is non-decreasing, then
the algorithm returns the optimal colouring c.

Let us construct an ordering v1, . . . , vn of the vertices of a given graph G by sequentially
deleting a vertex of minimum degree from G. We denote N+(vi) = {vj ∈ NG(vi) | j > i} and
deg+(vi) = |N+(vi)|. When G is a d-degenerate graph, it holds that deg+(vi) ≤ d for every
vi ∈ V (G). By greedily colouring the vertices of G in the reversed order, we obtain a colouring
using at most d+ 1 colours.

∀G, χ(G) ≤ δ∗(G) + 1 ≤ ∆(G) + 1

We finish this section by stating an upper bound on the chromatic number of a graph G as a
function of the Hall ratio of G and the number of vertices of G. Recall that no upper bound exists
as a function of the Hall ratio alone.

Theorem 0.2.7 (Chv́atal, 1975; Johnson, 1974; Lovász, 1975). Let G be a graph on n ≥ 2 vertices
of Hall ratio ρ. Then

χ(G) ≤ ρ lnn+ 1.

Proof. We prove this result by induction on n. If n = 1, then G is K1 and so χ(G) = 1.
Let us now assume that n > 1. Let I be any maximum independent set of G; by definition

of ρ it is of size at least
⌈
n
ρ

⌉
. We colour I with one colour, then apply induction on the graph

G′ obtained after deleting the vertices of I from G. The number of vertices of G′ is at most⌊(
1− 1

ρ

)
n
⌋
< n, and the Hall ratio of G′ is at most ρ since G′ is an induced subgraph of G. So

by induction,

χ(G′) ≤ ρ ln

((
1− 1

ρ

)
n

)
+ 1

≤ ρ ln

(
1− 1

ρ

)
+ ρ lnn+ 1

≤ ρ lnn.

By adding the new colour of I to the colouring of G′, we obtain a colouring of G using at most
ρ lnn+ 1 colours, as desired.

0.2.5.3 Hardness results

When a given problem is NP-hard, there is still some hope that it might be possible to give a good
approximation of its solution in polynomial time. In the case of the colouring problem, we might
be satisfied with some polytime algorithm which could yield a Cχ(G)-colouring of any graph G,
for some constant C > 1. Unfortunately, many results prove that such an algorithm cannot exist,
under the hypothesis that P 6= NP.
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Theorem 0.2.8 (Khanna, Linial, Safra, 2000 [76]). There exists some ε > 0, such that it is
NP-hard to compute an nε-approximation of the chromatic number.

Theorem 0.2.9 (Emden-Weinert, Hougardy, Kreuter, 1998 [38]). The k-colouring problem is
NP-complete on the class of graph of maximum degree ∆, when 3 ≤ k ≤ ∆−

√
∆ + 1.

0.2.6 Main classical results on graph colouring

Regarding the hardness of computing even an approximate value of the chromatic number, and
all its variants, a classic goal in graph colouring is to provide some sufficient conditions in order to
have a significantly better upper bound on the chromatic number than the naive ones. There has
been a lot of research in this direction in the last decades; hereafter is a list of some of the most
important results in the area.

Theorem 0.2.10 (4-colour theorem [105]). For every planar graph G,

χ(G) ≤ 4.

Theorem 0.2.11 (Grötzsch’s theorem [57]). For every planar triangle-free graph G,

χ(G) ≤ 3.

Theorem 0.2.12 (Bipartite graphs characterisation). For every graph G,

χ(G) ≤ 2 ⇐⇒ G contains no odd cycle.

Theorem 0.2.13 (Brook’s theorem [24]). For every connected graph G, either G is a complete
graph or an odd cycle, or

χ(G) ≤ ∆(G).

Theorem 0.2.14 (Johansson-Molloy theorem [65, 90]). For every triangle-free graph G,

χ(G) ≤ (1 + o(1))
∆(G)

ln ∆(G)
.

The strength of all these theorems lies in the fact that they are all sharp, since for every one of
them there exist infinite families of graphs satisfying its constraints and asymptotically reaching
the upper bound. The sharpness is exact for all of them, except the Johansson-Molloy theorem, for
which there remains an asymptotic multiplicative gap of 2 between the upper bound and the value
reached by the known infinite family of graphs, constructed through a pseudo-random process
which we describe in Section 0.3.2.3.

There remains of course numerous open problems concerning the chromatic number of graphs.
A first one concerns a generalisation of Theorem 0.2.14 to any H-free graph.

Conjecture 0.2.1 (Alon, Krivelevich, Sudakov, 1999 [7]). Let H be some fixed graph. There exists
a constant CH > 0 such that, for every H-free graph G,

χ(G) ≤ CH
∆(G)

ln ∆(G)
.
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Note that in order to prove Conjecture 0.2.1, it is enough to prove it when H is a complete
graph. Indeed, since any fixed H is a subgraph of Kn(H), every H-free graph is also in particular
Kn(H)-free. This conjecture deals with the asymptotic value of the chromatic number of graphs of
fixed clique number, when their maximum degree grows to infinity. A related conjecture, known
as the Reed conjecture, deals with the case when the maximum degree might be arbitrarily close
to the clique number.

Conjecture 0.2.2 (Reed, 1998 [104]). For every graph G,

χ(G) ≤
⌈
ω(G) + ∆(G) + 1

2

⌉
.

One of the best partial results to date in favour of Reed’s conjecture is the following.

Theorem 0.2.15 (Delcourt, Postle, 2017 [35]). There exists a constant ∆0 > 0 such that, for
every graph G of maximum degree ∆(G) ≥ ∆0,

χ(G) ≤
⌈
ω(G) + 12(∆(G) + 1)

13

⌉
.

0.2.7 Variants of the chromatic number

One can think of many variants of the colouring problem, depending on the context needed for its
application. Some are strengthened versions of the problem, some are relaxed. Let us present the
most notorious ones in this section.

0.2.7.1 The list chromatic number

In a k-colouring, every vertex receives a colour from a common set of colours [k]. In order to
be even more expressive, we consider a generalisation of k-colourings where every vertex picks its
colour from a private list of allowed ones. These are list colourings .

Definition 0.2.3. Let G be a graph.

1. Given a list assignment L : V (G)→ N, we say that G is L-colourable if there exists a proper
colouring c of G such that

∀v ∈ V (G), c(v) ∈ L(v).

We say that c is a proper L-colouring of G.

2. For a given k ∈ N, G is k-choosable if it is L-choosable for every list assignment L satisfying

∀v ∈ V (G), |L(v)| ≥ k.

3. The minimum k such that G is k-choosable is the list chromatic number , or choice number
of G. It is denoted χ`(G), or ch(G).

Remark 0.2.3. The naive bounds for the chromatic number remain valid.
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1. A k-colouring of a given graph G is an L-colouring of G, where

∀v ∈ V (G), L(v) = [k].

Therefore,
∀G, χ(G) ≤ χ`(G).

2. The greedy colouring is as efficient for list colourings as it is for usual colourings;

∀G, χ`(G) ≤ δ∗(G) + 1 ≤ ∆(G) + 1.

The list chromatic number of a given graph might be arbitrarily larger than its chromatic
number. This is notably the case for complete bipartite graphs.

Lemma 0.2.16. Let n =
(

2k−1
k

)
. Then χ`(Kn,n) > k.

Proof. Let us call X, Y the two parts of Kn,n. We let L be the list assignment on Kn,n such that

every set S ∈
(

[2k−1]
k

)
appears as the lists L(x) and L(y) assigned to some vertices x ∈ X and

y ∈ Y . We now show that Kn,n is not L-colourable.
Let us assume for the sake of contradiction that there exists a proper L-colouring c of Kn,n.

Assume that at most k − 1 different colours appear in c(X). Let S ⊆ [2k − 1] \ c(X) be any set
of cardinality k, there exists a vertex x ∈ X such that L(x) = S, and so L(x) ∩ c(X) = ∅, a
contradiction. So at least k colours appear in c(X), and the same holds by symmetry for c(Y ).
Since there are 2k − 1 available different colours, c(X) and c(Y ) must intersect in at least one
colour; so there exist x ∈ X and y ∈ Y such that c(x) = c(y). But since we are in Kn,n, there is
an edge between x and y, which contradicts the fact that c is proper.

Lemma 0.2.16 has been generalised to every graphs with minimum degree d — and so in
particular bipartite ones — by Alon [5], and later improved by Saxton and Thomason [106].

Theorem 0.2.17 (Saxton, Thomason, 2015 [106]). For every graph G with minimum degree d,

χ`(G) ≥ (1 + o(1)) log2(d).

In 1998, Alon and Krivelevich [6] had shown that the lower bound of Theorem 0.2.17 cor-
responds asymptotically almost surely to the value of the list chromatic number of a random
bipartite graphs. The random model that they used corresponds to the model Gk(n, p) defined in
Section 0.3.2.3 when k = 2, and the results holds for any value of p as a function of n. In the same
paper, they conjectured that this actually holds for every regular graph, up to some multiplicative
constant.

Theorem 0.2.18 (Alon, Krivelevich, 1998 [6]). For every graph G drawn from the bipartite Erdős-
Rényi model G(n, n, p), it asymptotically almost surely holds that

χ`(G) = (1 + o(1)) log2(np),

and so asymptotically almost surely

χ`(G) = (1 + o(1)) log2(∆(G)).
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Conjecture 0.2.3 (Alon, Krivelevich, 1998 [6]). There exists an absolute constant C > 0 such
that, for every bipartite graph G,

χ`(G) ≤ C ln ∆(G).

Quite surprisingly, while estimating the largest possible list chromatic number of a bipartite
graph remains an open problem, the same problem has been settled sharply for planar graphs.

Theorem 0.2.19 (Thomassen, 1994 [114]). For every planar graph G,

χ`(G) ≤ 5.

Theorem 0.2.20 (Voigt, 1993 [118]). There exist planar graphs which are not 4-choosable.

Theorem 0.2.21 (Thomassen, 1995 [115]). For every planar graph G of girth at least 5,

χ`(G) ≤ 3.

The intermediary result between Theorem 0.2.19 and Theorem 0.2.21 concerns the list chro-
matic number of triangle-free planar graphs. The fact that it is at most 4 is actually a corollary
of Theorem 0.1.6, which states that the degeneracy of triangle-free planar graphs is at most 3.

0.2.7.2 The fractional chromatic number

For some applications, the chromatic number is too restrictive in order to formalise the correspond-
ing problem. We need refinements of the chromatic number, and a most elegant and relevant one
is the fractional chromatic number.

Definition 0.2.4. Let G be a graph.

1. A proper (a : b)-colouring of G is a function c : V (G)→
(

[a]
b

)
such that

∀uv ∈ E(G), c(u) ∩ c(v) = ∅.

We say that c is a fractional colouring of G, of weight a/b.

2. The fractional chromatic number of G, denoted χf (G), is defined by

χf (G) = inf
{a
b

∣∣∣ there exists a proper (a : b)-colouring of G
}
.

Remark 0.2.4. Bounds for the fractional chromatic number can be derived from those of the
chromatic number.

1. A proper k-colouring is the same as a proper (k : 1)-colouring. Therefore,

∀G, χf (G) ≤ χ(G).

2. The Hall ratio is also a lower bound for the fractional chromatic number;

∀G, n(G)

α(G)
≤ ρ(G) ≤ χf (G).
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3. A proper (a : b)-colouring of G is the same as a proper a-colouring of G�Kb, so

χf (G) = inf
b∈N∗

χ(G�Kb)

b
.

⇐⇒

Figure 0.2.4: A proper (5 : 2)-colouring of C5, equivalent to a 5-colouring of C5 �K2

We might wonder, as it has been done for the chromatic number, how far from the Hall ratio the
fractional chromatic number can get. The Kneser graphs are of no help here, since their fractional
chromatic number equals their Hall ratio — this property holds for every vertex-transitive graph;
a proof of this fact lies in Section 0.3.2.4.

Question. Does there exist some function f : Q→ Q such that, for every graph G,

χf (G) ≤ f
(
ρ(G)

)
?

This question has been answered only very recently by the negative.

Theorem 0.2.22 (Dvořák, Ossona de Mendez, Wu, 2018+ [37]). For every c ≥ 1, there exists a
graph G such that χf (G) ≥ c and ρ(G) ≤ 18.

The fractional chromatic number can equivalently be defined as the fractional relaxation of the
integer linear program (2) computing the chromatic number.

χf (G) = min
∑

Imax∈I(G)

wI ,

such that


∀v ∈ V (G),

∑
I∈Imax(G)

v∈I

wI ≥ 1,

∀I ∈ Imax(G), wI ∈ [0, 1].

(4)

This equivalent formulation implies that the value of the fractional chromatic number is always
attained as the weight of some fractional colouring. The infimum in Definition 0.2.4.2 can therefore
be replaced by a minimum. In particular, the fractional chromatic number is always a rational
number.

Remark 0.2.5. Fractional colourings can be defined as probability distributions on the independent
sets. Given a graph G, there exists a fractional colouring of G of weight w if and only if there
exists a probability distribution on the independent sets I(G) of G — here again we can restrict
to the set Imax(G) of maximal independent sets of G — such that, if I is a random independent
set drawn according to this distribution,

∀v ∈ V (G), P [v ∈ I] ≥ 1

w
.
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Remark 0.2.6. Kneser graphs play the same role for proper (a : b)-colourings as complete graphs
for proper k-colourings. An (a : b)-colouring of some graph G is the same as a homomorphism
from G to KGa,b.

A practical illustration of the fractional chromatic number. We have just defined two
variants of the chromatic number; the list chromatic number and the fractional chromatic number.
The usefulness of the first one is quite transparent from its definition; it is simply a more constrained
version of the colouring problem where each vertex is selective on the colours he may be assigned.
The second one, on the other hand, seems more arbitrary, and could be misleadingly thought of
as a purely mathematical construction, whose mere purpose is to yield a neater parameter than
the chromatic number, whose behaviour is more convenient in the mathematical theory. While
these facts might be subjectively true, the fractional chromatic number is far from being only an
abstract parameter; it is actually way more fit to some real life applications than the chromatic
number, as we may see right now.

Let us provide an example close to the one presented in Section 0.2.2 where graph colouring
is needed. Nowadays, computing power arises mainly from parallel processes. Even a simple
smartphone comes with 8 cores, and supercomputer have thousands, if not millions of them.
Assume now that you are a scientist, and that you have a massive computation to perform. Luckily
for you, this computation consists in some large number of similar tasks, all of which need roughly
the same computing time, say one hour. Moreover, you have access to an unlimited number of
cores which can execute these tasks in parallel, or at least more than you will ever need. If no
further constraint arises, you could simply run all your tasks in parallel at once, thus finishing
your computation within one hour.

Unfortunately, more constraints do arise in your case. Your tasks share common resources,
and for this reason some of them cannot be run at the same time. You need to use a conflict
graph G, where every vertex is a task, and two tasks which cannot be executed simultaneously
share an edge. An independent set S in your conflict graph is a set of tasks which can be executed
simultaneously.

A proper k-colouring c of your graph yields a conflict-free sequence of executions of your tasks
within k hours, where the i-th hour is devoted to completely executing the tasks coloured with the
i-th colour. You can finish all your tasks within χ(G) hours.

However, nothing forces you to fully run a given task in one setting. You could very well run
it for half an hour, then pause it some time, and run it until the end later. In order to exploit this
strategy, you need an (a : b)-colouring of G. Each colour corresponds to the execution of pairwise
conflictless tasks during 1/b hour, so that each task is run and paused b times, until it is finished.
You will therefore be able to complete your computation within χf (G) ≤ χ(G) hours.

Results on the fractional chromatic number. The fractional chromatic number is also in-
teresting as an intuition for the chromatic number. For instance, Reed’s conjecture has been shown
to hold in the fractional setting.

Theorem 0.2.23 (Molloy, Reed, 2002 [93]). For every graph G,

χf (G) ≤ ω(G) + ∆(G) + 1

2
.

In general, there is no known classical class of graphs whose fractional chromatic number
differs significantly from their chromatic number. Kneser graphs are an example of graphs where
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the difference between both parameters can get arbitrarily large, however they are too specific to
be consider as a class of graphs in a whole. In general, a class G of graph should be hereditary ,
which means that for any graph G ∈ G , all induced subgraphs H should also be in the class G —
the class G can be defined as the subset of graphs satisfying some hereditary property.

A plausible classical class of graphs where both parameters could diverge is the class of triangle-
free d-degenerate graphs. While the chromatic number of such a graph can be as large as d + 1,
the only known example of graphs reaching this bound have a much smaller fractional chromatic
number. Thus, Harris has made the following conjecture.

Conjecture 0.2.4 (Harris, 2019 [59]). There exists an absolute constant C ≥ 1
2

such that, for
every triangle-free d-degenerate graph G,

χf (G) ≤ C
d

ln d
.

0.2.7.3 Edge colourings

The vertices of a graph are not the only objects which might be properly coloured. The edges of
the graph are the next natural ones to consider in the context of proper colourings. In this setting,
matchings are the analogue of independent sets in vertex colouring.

Definition 0.2.5. Let G be a graph.

1. A proper k-edge-colouring of G is a function c : E(G)→ [k] assigning colours to the edges of
G such that no two incident edges are assigned the same colour;

∀uv, vw ∈ E(G), c(uv) 6= c(vw).

When G admits a k-edge-colouring, we say that G is k-edge-colourable.

2. The chromatic index χ′(G) of G is the minimum k such that G is k-edge-colourable.

Remark 0.2.7. An edge-colouring of a given graph G is equivalent to a colouring of its line graph
L(G). Therefore

χ′(G) = χ(L(G)) ≥ ω(L(G)) ≥ ∆(G).

You can then easily define list and fractional versions of the chromatic index, respectively χ′`(G) =
χ`(L(G)) and χ′f (G) = χf (L(G)).

The most famous result on edge colourings is due to Vizing [117], who determined that the
chromatic index of a graph of fixed maximum degree can take only two different values.

Theorem 0.2.24 (Vizing’s theorem [117]). For every graph G,

χ′(G) ∈ {∆(G),∆(G) + 1}.

There also exists a notorious conjecture related to the list chromatic index, known as the list
colouring conjecture.

Conjecture 0.2.5 (The list colouring conjecture). For every graph G,

χ′`(G) = χ′(G).
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A partial result in favor of Conjecture 0.2.5 states that it holds for bipartite graphs. It is due
to Galvin [55].

Theorem 0.2.25 (Galvin, 1995 [55]). For every bipartite graph G,

χ′`(G) = ∆(G) = χ′(G).

The list colouring conjecture has been shown to hold asymptotically by Kahn in 1996.

Theorem 0.2.26 (Kahn, 1996 [67]). For every graph G of maximum degree ∆,

χ′`(G) = (1 + o(1))∆

as ∆→∞.

0.2.7.4 Total colourings

We now define total colourings, which are simultaneous colourings of the edges and vertices of a
graph.

Definition 0.2.6. Let G be a graph.

1. A proper k-total-colouring of G is a function c : (V (G) ∪ E(G)) → [k] assigning colours to
the vertices and edges of G such that no two incident edges, no two adjacent vertices, and
no vertex and incident edge are assigned the same colour;

∀u ∈ V (G),∀v ∈ N(u), c(u) 6= c(v) and c(u) 6= c(uv) and ∀w ∈ N(u) \ {v}, c(uv) 6= c(uw).

When G admits a k-total-colouring, we say that G is k-totally-colourable.

2. The total chromatic number χ′′(G) of G is the minimum k such that G is k-totally-colourable.

Remark 0.2.8. If you define the total graph T (G) of a given graph G as the graph obtained by
adding an edge between every vertex v ∈ V (G) and every edge uv ∈ V (L(G)) in the disjoint union
of G and L(G), then

χ′′(G) = χ(T (G)).

You can then easily define list and fractional versions of the total chromatic number, respectively
χ′′` (G) = χ`(T (G)) and χ′′f (G) = χf (T (G)).

There is a notorious conjecture on total graph colourings.

Conjecture 0.2.6 (The total colouring conjecture). For every graph G,

χ′′(G) ≤ ∆(G) + 2.

There are two results in favour of Conjecture 0.2.6.

Theorem 0.2.27 (Molloy, Reed, 1998 [92]). For every graph G,

χ′′(G) ≤ ∆(G) + 1026.
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Theorem 0.2.28 (Kilakos, Reed, 1993 [77]). For every graph G,

χ′′f (G) ≤ ∆(G) + 2.

Note that, given a graph G together with a proper (∆(G) + 1)-colouring, each edge of G is
incident to at most 2 colours. So

χ′′(G) ≤ χ′`(G) + 2,

and therefore Conjecture 0.2.5, if true, would almost directly imply Conjecture 0.2.6, namely

χ′′(G) ≤ ∆(G) + 3.



0.3. TOOLS AND STRATEGIES 49

0.3 Tools and strategies

Let us sum up a bit what has been developed in the two previous sections. We have given a broad
overview of what graph theory is about, and why this is such an important domain to explore.
Graphs are powerful both as an abstract combinatorial object and as a concrete representation of
real-life structures, for they manage to combine a high expressiveness, all the while being generic
enough to capture countless possible scenarios. There are many problems which can be raised
in the domain of graph theory, most of them arising from a demand for concrete applications.
The graph colouring problem is one of the most notorious, and translates the problem of resource
allocation under some constraints.

Finding an optimal proper colouring of a graph is a highly desirable goal in many situations,
since this is the solution in order to optimise many processes in life. Unfortunately, this problem
reaches a strong complexity barrier. It belongs to the family of NP-hard problems, even when
relaxing the desired goal to some reasonable approximation of the optimum. Therefore, generic
algorithms computing an optimal colouring of a graph are doomed to fail at terminating in a
non astronomical time when working on graphs with merely a hundred vertices, barring a really
unlikely proof that P = NP.

In this context, research in graph colouring has brought numerous colourability results relying
on some specific structure of the considered graphs. Organising graphs into structural classes
appears to be one of the most efficient ways to increase the general knowledge in the domain of
graph colouring. All the results depicted in Section 0.2.6 fall into this branch of research. The
content of this thesis will be devoted to bringing new results to this branch, and to improve on
some already established ones.

In this new section, we are going to present some of the most common techniques used in
order to obtain the aforementioned results. All of these techniques will be illustrated with classical
applications raising interesting facts on graph colouring.

0.3.1 Structural lemmas

The first tools ever described in graph theory, which provoked the emergence of this domain, rely
on a structural analysis of the graphs. Their common goal is to extract regular structures from
graphs satisfying some conditions as permissive as possible. Most of the results presented in this
subsection are the historical foundations of modern graph theory, most of them established in the
first half of the XX-th century.

0.3.1.1 Structure on the edges of a graph

The first ever result from graph theory was established by Leonard Euler in 1736 as the solution
to a famous problem known as the Seven Bridges of Königsberg. We begin by stating its formal
formulation.

Definition 0.3.1. Given a graph G, a Eulerian trail (or Eulerian path) of G is a walk (a sequence
of consecutively incident edges, i.e. a path where vertices and edges can be visited several times)
of G visiting all edges exactly once. A Eulerian circuit (or Eulerian cycle) is a closed Eulerian
trail. A graph containing a Eulerian circuit is said to be Eulerian.

The Seven Bridges of Königsberg problem consists in finding a circuit of the city of Königsberg
which traverses each of its seven bridges exactly once. This can be formulated as finding a Eulerian
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circuit of the multigraph (a graph with possibly several edges between two vertices) associated to
the city of Königsberg, where each edge represents a bridge, as represented in Figure 0.3.1.

Figure 0.3.1: The multigraph representation of the seven bridges of Königsberg

What Euler demonstrated is that there is no solution to the Seven Bridges of Königsberg
problem, and established a full characterisation of the Eulerian (multi)graphs.

Theorem 0.3.1 (Euler, 1736). A connected graph G is Eulerian if, and only if, the degrees of all
its vertices are even.

It is now time to mention Hall’s theorem, another essential result concerning edge structures in
graph theory. It establishes a sufficient condition for a bipartite graph to admit a perfect matching.

Theorem 0.3.2 (Hall, 1935 [58]). Let H = (U, V,E) be a bipartite graph. Then, a sufficient and
necessary condition for H admitting a matching incident to every vertex u ∈ U is that

∀X ⊆ U, |NH(X)| ≥ |X| .

Among the many applications of Hall’s theorem, a notable one deals with the chromatic index
of regular bipartite graphs.

Corollary 0.3.2.1. Every d-regular bipartite graph H contains a perfect matching. Therefore,

χ′(H) = d.

Proof. Let H = (U, V,E) be a d-regular graph. Let us apply Hall’s theorem to U . Let X ⊆ U
be any subset of vertices, and let Y = NH(X) ⊆ V . Since H is d-regular, the number of edges
incident to X is exactly d |X|; this is the number of edges between X and Y , and this is at most
the number of edges incident to Y , that is d |Y |;

d |X| ≤ d |Y |
|X| ≤ |Y | .

So Hall’s theorem yields a matching M incident to every vertex in U . Since H is regular and
bipartite, it holds that |U | = |V | (since d |U | = e(H) = d |V |). So M is also incident to every
vertex in V ; it is a perfect matching of H.

Now we prove that χ′(H) = d by induction. When d = 1, the graph is a matching, and
therefore only one colour is needed to colour its edges. When d > 1, we apply induction on H \M ,
a (d− 1)-regular bipartite graph, which is therefore (d− 1) edge-colourable. By colouring M with
one extra colour, we obtain a d-colouring of the edges of H.
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Definition 0.3.2. Given a graph G, a vertex cover of G is a subset of vertices X ⊆ V (G) such
that every edge e ∈ E(G) has an extremity contained in X.

Remark 0.3.1. The complement of a vertex cover X in G is an independent set. Indeed, if there is
an edge e ∈ E(G) between two vertices in V (G)\X, this edge is not covered by X, a contradiction.

Theorem 0.3.3 (Kőnig, 1931 [81]). If G is a bipartite graph, then the size of a maximum matching
in G equals the size of a minimum vertex cover of G.

Since the complement of a minimum vertex cover is a maximum independent set, König’s
theorem implies that computing the independence number of a bipartite graph is equivalent to
computing its matching number. In particular, this can be done in polynomial time.

Both Hall’s and Kőnig’s theorems are actually special cases of a much stronger statement,
known as the max-flow min-cut theorem.

Definition 0.3.3. Let G be a directed graph, of source vertex s ∈ V (G) (the in-degree of s is
0), of sink vertex t ∈ V (G) (the out-degree of t is 0), given with some capacity ce ∈ R+ for every
e ∈ E(G).

1. A s, t-flow of G is a mapping f : E(G)→ R+ satisfying

(i) ∀e ∈ E(G), f(e) ≤ ce, and

(ii) ∀v ∈ V (G) \ {s, t},
∑

u∈N−(v)

f(uv) =
∑

w∈N+(v)

f(vw).

The value of a given flow f is defined by

|f | =
∑

v∈N+(s)

f(sv) =
∑

u∈N−(t)

f(ut).

2. A s, t-cut of G is the set of edges E(S, T ) between the two parts of a bipartition (S, T ) of
V (G) satisfying s ∈ S and t ∈ T . The capacity of a given cut C is defined by

|C| =
∑
e∈C

ce.

Theorem 0.3.4 (Max-flow min-cut). Given a directed graph G of source s and sink t, the maximum
value of a s, t-flow of G equals the minimum capacity of a s, t-cut of G.

Remark 0.3.2. The max-flow problem can be formulated as the fractional solution of some linear
program, and the min-cut problem can be formulated as the fractional solution of the dual of this
linear program. The max-flow min-cut theorem is therefore a consequence of the strong duality
theorem for linear programs, which states that the optimal solution (if it exists) of a primal linear
program equals the optimal solution of its dual.

0.3.1.2 Regularisation of graphs

Most of the content in this thesis focuses on the class of graphs of maximum degree bounded by
some constant d. It is often more convenient to work within the class of regular graphs, so a useful
and classical trick, given a graph G of maximum degree ∆(G) = d, consists in injecting G into a
d-regular supergraph ϕ(G). This supergraph should share the same properties as G, so that both
can be freely interchanged.
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Theorem 0.3.5 (Exoo, Jajcay, 2008 [50]). For every integers d and g both at least 3, there exists a
d-edge-coloured d-regular graph with girth at least g which is vertex transitive as a coloured graph.

Note that Theorem 0.3.5 is stated in a weaker version in [50]. However, the graph constructed
in the proof of the theorem is a Cayley graph C(Γ, X) where the generating set X is composed of
involutions. So the labelling of the edges induced by X yields a d-edge-colouring which is stable
by the automorphisms induced by the left multiplication action of Γ on itself.

Lemma 0.3.6. From any graph G of maximum degree d and girth g, we can construct a d-regular
graph ϕ(G) of girth g whose vertex set can be partitioned into induced copies of G, and such that
any vertex v ∈ G can be sent to any of its copies through an automorphism.

Proof. Set k :=
∑
v∈G

(d − deg(v)). Let G′ be the supergraph of G obtained by adding k ver-

tices (v′i)i∈[k], each of degree 1, such that all other vertices have degree d. We let e′i be the edge
of G′ incident to v′i, for each i ∈ [k]. By Theorem 0.3.5, there exists a vertex-transitive k-regular
graph H of girth at least g together with a proper edge-colouring c using k colours. Let n(H) be
the number of vertices of H and write V (H) = [n(H)].

We construct ϕ(G) by starting from the disjoint union of n(H) copies (Gi)i∈[n(H)] of G. For
each edge e = {i, j} ∈ E(H), letting ue be the vertex of G incident to the edge e′c(e) in G′, we add
an edge between the copy of ue in Gi and that in Gj.

Any cycle in ϕ(G) either is a cycle in G, and hence has length at least g, or contains all the
edges of a cycle in H, and hence has length at least g. It follows that ϕ(G) has girth g.

The last statement follows readily from the fact that H is vertex transitive as a coloured
graph.

0.3.1.3 Decomposition

Instead of finding one well structured object within a graph, one might want to fully decompose it
into structured objects. This is notably what graph colouring is about regarding its independent
set; a graph colouring consists in a decomposition of its vertex set into independent sets.

We here state a result of Petersen concerning the decomposition of the edge set of a graph into
2-factors.

Theorem 0.3.7 (Petersen, 1891 [99]). For any k > 0, every 2k-regular graph can be decomposed
into k 2-factors.

Proof. We know by Euler’s theorem that a graph with only even degrees has a Eulerian circuit. A

traversal of this Eulerian circuit yields an orientation
−→
G of the edges of G, such that every vertex

has k in-going arcs and k out-going arcs. Let H = (V −, V +, EH) be the k-regular bipartite graph
obtained by duplicating each vertex v ∈ V (G) into v− ∈ V − and v+ ∈ V +, and putting an edge

between u− and v+ whenever there is an arc going from u to v in
−→
G .

Since H is bipartite and regular, Corollary 0.3.2.1 implies that H can be decomposed into 2k
perfect matchings. It is possible to organise them into k pairs, so that each pair of matchings yields
a 2-factor of G after collapsing each pair of vertices (v−, v+) ∈ V − × V + back into v ∈ V (G).

Petersen’s theorem is useful to provide an upper bound on the number of colours needed in
an edge-colouring of a multigraph, that is a graph where there might be several edges linking the
same pair of vertices.
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Theorem 0.3.8 (Shannon, 1949 [107]). For every multigraph G,

χ′(G) ≤
⌊

3

2
∆(G)

⌋
,

and this is attained by Shannon’s triangles.

Figure 0.3.2: Shannon’s theorem is sharp for Shannon’s triangles.

Proof. We give a proof of Shannon’s theorem in the case when ∆(G) = 2k. Up to adding edges and
vertices to G, which would not decrease its chromatic index, we might assume that G is 2k-regular.
It is therefore possible to decompose G into k 2-factors by Petersen’s theorem, all of which are the
disjoint union of some cycles. Since every cycle is 3-edge-colourable, it is possible to colour the
edges of G with at most 3k = 3∆(G)

2
colours.

0.3.1.4 Cubic graphs

Theorem 0.3.9 (Petersen, 1891 [99]). If G is cubic (3-regular) and bridgeless (2-edge-connected),
then G can be decomposed into a perfect matching and a 2-factor.

Lemma 0.3.10 (The parity condition [60]). Let G be a cubic graph, and c be a proper 3-edge-
colouring of G. Then every cut X of G satisfies∣∣c−1(1) ∩X

∣∣ ≡ ∣∣c−1(2) ∩X
∣∣ ≡ ∣∣c−1(3) ∩X

∣∣ (mod 2).

Proof. Let (i, j) ∈
(

[3]
2

)
, and let Eij denote the edges of G coloured either with i or j. Eij is a

2-factor of G, so the disjoint union of cycles. Every cycle intersects X in an even number of edges,
therefore |Eij| mod 2 = 0. So

∀i 6= j,
∣∣c−1(i) ∩X

∣∣+
∣∣c−1(j) ∩X

∣∣ ≡ 0 (mod 2).

This implies the desired result.

Lemma 0.3.10 is used notably in the proof that the 3-edge colouring problem is NP-complete [60]
in the class of cubic graph, through a reduction to 3-SAT.
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0.3.2 Probabilistic method

The probabilistic method has shown to be really effective in order to prove the existence of special
objects which we have no peculiar idea how to construct. In the context of graph colouring, the
typical problem consists in finding — or at least giving a good estimation of — the maximum
χ(G ) of the chromatic number over all graphs of a given class G . In order to demonstrate that
χ(G ) ≤ k for some k ∈ N, it suffices to find a proper k-colouring of every graph from the class.
The colouring can typically be shown to exist through the probabilistic method. On the other
hand, in order to demonstrate that χ(G ) > k for some k ∈ N, it suffices to find a graph G0 ∈ G
which is not k-colourable. Again, such a graph can be shown to exist through the probabilistic
method.

The probabilistic method is particularly efficient for proving the existence of objects which
have a positive density within their probability space. When the objects looked for are too rare,
the probabilistic method often needs to be combined with carefully chosen deterministic structural
arguments in order to be effective.

0.3.2.1 Lovász Local lemma

The main probabilistic tool for proving the existence of a special instance of a random object which
satisfies a given set of random events sharing dependencies is the Lovász Local Lemma, generally
referred to as LLL for brevity.

Theorem 0.3.11 (LLL). Let E = {E1, . . . , En} be a finite set of random events in a probability
space. For every Ei ∈ E , let Γi ⊆ E \{Ei} be a subset of events such that Ei is mutually independent
of E \ (Γi ∪ {Ei}). If there exist x1, . . . , xn ∈ (0, 1) such that

∀i, P [Ei] ≤ xi
∏
Ej∈Γi

(1− xj),

then the probability that no event Ei occurs is lower bounded by

n∏
i=1

(1− xi) > 0.

Remark 0.3.3. It is possible to have a version of LLL with no independence requirement, called the

lopsided LLL, which has the same proof as LLL. In this version, we bound P

[
Ei

∣∣∣∣∣ ⋃
Ej∈Γi∪{Ei}

Ej

]
rather than P [Ei].

It is often the case that LLL needs to be applied in a symmetric setting. The symmetric
formulation of LLL is therefore the one which is mostly used in the literature.

Theorem 0.3.12 (Symmetric LLL). Let E1, . . . , En be a finite set of random events, all of which
occur with probability p. Assume that every Ei is mutually independent from a set of all but at
most D of the other random events. Then, provided that

ep(D + 1) ≤ 1,

the probability that no event Ei occurs is positive.
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Remark 0.3.4. Shearer [109] later improved the condition of the symmetric version of LLL up to
optimality, by showing that {

p < 1 if D = 1

p < (D−1)D−1

DD
if D ≥ 2

is a sufficient condition on p. This implies in particular that epD ≤ 1 is enough as well, since it
always holds that 1/e < (D−1

D
)D−1.

Let us illustrate some use of LLL in the context of list colouring. Given a graph G, and some
k-list assignment L : V (G)→

(
[n]
k

)
, we say that L has separation c if it holds that

∀uv ∈ E(G), |L(u) ∩ L(v)| ≤ c.

Theorem 0.3.13 (Kratochvil, Tuza, Voigt, 1998 [82]). Given a graph G, let L be a k-list assign-
ment of G with separation c. Then, provided that k ≥

√
2ec(∆(G)− 1), G is L-colourable.

Proof. Let c be a (most likely improper) random L-colouring of G obtained by drawing uniformly
at random a colour from L(v) for every vertex v ∈ V (G). For every edge uv ∈ E(G), we let Euv
be the event that c(u) = c(v). The event that c is a proper L-colouring of G is equivalent to the
negation of all the events Euv, for uv ∈ E(G).

If Euv occurs, it means that c(u) is one of the at most c common colours between L(u) and
L(v), and provided that, c(v) is that exact same colour. So

P [Euv] = P [c(u) ∈ L(u) ∩ L(v)] · P [c(v) = c(u) | c(u) ∈ L(u) ∩ L(v)]

+ P [c(u) ∈ L(u) \ L(v)] · P [c(v) = c(u) | c(u) ∈ L(u) \ L(v)]

≤ c

k
· 1

k
+
k − c
k
· 0 =

c

k2
.

If two edges uv and u′v′ are not incident, the events Euv and Eu′v′ are independent. So the
number of events not independent from Euv is the number of edges incident to uv, which is at
most D = 2(∆(G)− 1).

We apply the symmetric version of LLL with p =
c

k2
and D = 2∆(G)− 2.

epD =
2ec(∆(G)− 1)

k2
≤ 1,

so we conclude that, with positive probability, the L-colouring c is proper.

0.3.2.2 Probability bounds

When analysing a random process, computing the exact probability of a given event can quickly
become a tedious and technical task to perform, if not entirely out of reach. Fortunately, there
exist quite a few probability bounds which can be of great help here. There is such a variety of
them that it is very unlikely that none can be efficiently applied in a given probabilistic setting.
Let us here present some of the inescapable ones for applications in graph colouring.

Theorem 0.3.14 (Union bound: Boole’s inequality). Given a countable set of random events
(Ei)i, it holds that

P

[⋃
i

Ei

]
≤
∑
i

P [Ei] .
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Theorem 0.3.15 (Markov’s inequality). Let X be a non negative random variable, and a > 0 be
some constant. Then

P [X ≥ a] ≤ E [X]

a
.

Theorem 0.3.16 (Chebyshev’s inequality). Let X be a non negative random variable, and a > 0
be some constant. Then

P [|X − E [X]| ≥ a] ≤ Var(X)

a2
,

where Var(X) = E
[(
X − E [X]

)2
]

is the variance of X.

Theorem 0.3.17 (Chernoff bounds). Let X1, . . . , Xn be independent {0, 1}-valued random vari-

ables. Let X =
n∑
i=1

Xn, and δ ≥ 0 be some constant. Then

P [X ≤ (1− δ)E [X]] ≤ e
−
δ2

2
E [X]

, and

P [X ≥ (1 + δ)E [X]] ≤ e
−

δ2

2 + δ
E [X]

.

These bounds also hold when each inequality is strict.

Remark 0.3.5. Chernoff bounds also hold when X1, . . . , Xn are negatively correlated rather than
independent, that is when

E

[
n∏
i=1

Xi

]
≤

n∏
i=1

E [Xi] .

The inequalities of Markov and Chebyshev are usually useful for the first and second moment
method, which is used in order to analyse phase transitions in random graphs.

Chernoff bounds have a much wider range of applications, mainly because of their strength due
to the exponential decrease of its bounds. Its statement implies that the distribution function of
any random variable counting independent events is highly concentrated around its mean. As it
turns out, the number of applications of such a result is huge, and we shall illustrate an application
to fractional colourings. To this end, let us first define an analogue of list colouring in the fractional
setting.

Definition 0.3.4. Given a graph G, we say that G is (a : b)-choosable if for any list assignment
L : V (G)→

(N
a

)
there exists a colouring cL : V (G)→

(N
b

)
satisfying

∀v ∈ V (G), cL(v) ∈
(
L(v)

b

)
, and

∀uv ∈ E(G), cL(u) ∩ cL(v) = ∅.

The fractional choosability chf (G) is the infimum of a/b such that G is (a : b)-choosable.

Theorem 0.3.18 (Alon, Tuza, Voigt, 1997 [9]). For every graph G,

chf (G) = χf (G).
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Proof. Note that, in the definition of (a : b)-choosability, if the list assignment L is such that
L(v) = [a] for every vertex v ∈ V (G), the corresponding colouring cL is a (a : b)-colouring of G.
In particular, chf (G) ≥ χf (G).

We will now prove the other side of the inequality. Let 1 ≥ ε > 0 be an arbitrarily small
rational positive constant, and let c be a proper (p : q)-colouring of G such that χf (G) = p/q. We
let a = (1 + ε)pm and b = qm for some integer m such that a is an integer. We shall later precise
the value of m, which will be large enough for our needs, that is for G to be (a : b)-choosable. Let L
be a list assignment of G such that |L(v)| = a for every vertex v ∈ V (G), and let X =

⋃
v∈V (G)

L(v)

be the (finite) set of colours used by L.

For any colour x ∈ X, we let Yx be drawn uniformly at random from [p], and for every i ∈ [p]
we let Xi be the (random) subset of X containing all colours x ∈ X satisfying Yx = i. We now let
Li(v) = L(v) ∩Xi for every vertex v ∈ V (G), and apply Chernoff bound on the random variable
|Li(v)| of expectancy µ = a/p = (1 + ε)m;

P
[∣∣Li(v)

∣∣ < m
]
≤ P

[∣∣Li(v)
∣∣ <(1− ε

2

)
µ
]

< e
−

(
ε
2

)2

2
µ

< e
−
ε2

8
m
.

Let B be the bad random event that there exist v ∈ V (G) and i ∈ [p] such that |Li(v)| < m.
We can bound from above the probability of B through a union bound, which yields

P [B] < np · e
−
ε2

8
m

< 1,

provided that m ≥ 8 ln(np)/ε2. It means that with positive probability, every Li(v) is of size at
least m. Let Ci(v) be the corresponding value of each Li(v) in such a random draw. Note that
Ci(u) and Cj(v) are disjoint for any u, v ∈ V (G) provided that i 6= j. We define the colouring CL
by

∀v ∈ V (G), CL(v) :=
⋃
i∈c(v)

Ci(v).

For every L, the colouring CL satisfies that CL(v) ⊆ L(v) and |CL(v)| ≥ qm for every vertex
v ∈ V (G), and CL(u) ∩ CL(v) = ∅ for every edge uv ∈ E(G). We conclude that indeed G is
(a : b)-choosable. So

chf (G) ≤ inf
ε>0

(1 + ε)pm

qm
=
p

q
= χf (G).

0.3.2.3 Random graphs

The most widely analysed random graph model is the Erdős-Rényi one, as well for its simplicity
than for its high potential in finding special graphs. Note in particular that a graph drawn from
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G(n, 1/2) corresponds to a graph chosen uniformly at random among the labelled graphs on n
vertices.

A classical analysis performed on a graph G drawn from G(n, p) is, given a graph property P ,
to find a threshold on the value of p for the property P to appear asymptotically almost surely in
G. Formally, a threshold for a given property P is a function f on integers such that if p = o(f(n))
the property P asymptotically almost surely does not hold, while if p = ω(f(n)) the property
P asymptotically almost surely holds. It can be the case that the conditions can be replaced
with p ≤ (1 − ε)f(n) and p ≥ (1 + ε)f(n) respectively, for any ε > 0, in order to have the same
behaviour. We say in this case that f is a sharp threshold . In the paper [48] where they introduced
their model, Erdős and Rényi proved that there exists a sharp threshold for connectivity.

Theorem 0.3.19 (Erdős, Rényi, 1960 [48]). The function n 7→ lnn/n is a sharp threshold for the
property that G drawn from G(n, p) is connected.

A sharp threshold for unique colourability. We describe a model of random balanced k-
partite graph directly inspired from the Erdős-Rényi one, for which we exhibit a sharp threshold
for the property that a graph G is uniquely k-colourable, that is there exists exactly one proper
k-colouring of G.

Definition 0.3.5. We define the random k-partite graph model Gk(n, p) as the set of random

graphs G =

⋃
i∈[k]

Vi, E

 consisting of k independent parts Vi of size n, and such that the events

that xy ∈ E, for x ∈ Vi, y ∈ Vj, i 6= j, are independent and identically distributed, of probability
p.

Remark 0.3.6.

1. A graph drawn from Gk(n, 1/2) corresponds to a labelled subgraph of the complete k-partite
graph Kk∗n drawn uniformly at random.

2. Drawing a graph G from Gk(n, p) is equivalent to drawing a graph G′ from G(kn, p), and
removing from G′ the edges with both extremities in a same part Vi, for any i ∈ [k].

Theorem 0.3.20. Let 1 > ε > 0 and G ∈ Gk(n, p), for some p ≤ (1− ε) lnn
n

. Then asymptotically
almost surely, there exist several proper k-colourings of G.

Proof. Let G =(V1 ∪ . . . ∪ Vk, E) ∈ Gk(n, p), such that p ≤ (1− ε) lnn
n

. For every x ∈ Vi and j 6= i,
we define the event U j

x that x is uncovered by Vj;

U j
x ≡ NG(x) ∩ Vj = ∅.

The probability that the event U j
x occurs is then

P
[
U j
x

]
= (1− p)n ≥

(
1− (1− ε) lnn

n

)n
∼

n→∞
e−(1−ε) lnn = nε−1.

The events (U j
x)x, j are all pairwise independent, so we can use Chernoff’s inequality to bound

from above the probability that none of them occurs. Let Xj
x be 1 if U j

x occurs, and 0 otherwise.
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We let S be the sum of all the random variables Xj
x;

S :=
k∑
i=1

∑
x∈Vi

∑
j 6=i

Xj
x.

Note that E [S] ∼
n→∞

k(k − 1)nε, and the negation of all events U j
x is equivalent to the event that

S = 0. Chernoff bound applied with δ = 1 yields

P

[∧
x,j

U j
x

]
= P [S ≤ 0] ≤ e

−
1

2
E [S]

= e
−

1 + o(1)

2
k(k − 1)nε

→
n→∞

0.

This means that, asymptotically almost surely, there exists a vertex x0 ∈ Vi0 with no neighbours
in Vj0 , for some (i0, j0) ∈

(
[k]
2

)
. Therefore, there exist at least two proper k-colourings of G, the

canonical one c0 satisfying c0(x) = i for every i and x ∈ Vi, and the one obtained from c0 by
changing the colour of x0 from i0 to j0.

Remark 0.3.7. Let k ≥ 2. In a properly k-coloured graph G, if the subgraph induced by two
different colours is disconnected, then G contains several proper colourings. If G is drawn from
Gk(n, p), then the subgraph H of G induced by V0 and V1 is a subgraph of a graph drawn from
G(2n, p), as noted in Remark 2. A weaker version of Theorem 0.3.20 can therefore be obtained by

applying Theorem 0.3.19 on H, with p ≤ (1− ε) ln(2n)
2n

.

Lemma 0.3.21. Let 1
2
> ε > 0 and G ∈ Gk(n, p), for some p ≥ (1 + ε) lnn

n
. Then asymptotically

almost surely, G admits a unique proper k-colouring.

Proof. Let c be a proper k-colouring of G. For every i ∈ [k], we denote ai = |c−1({i})| and
ai,j = |c−1({i}) ∩ Vj|, and we define a∗i := max

j∈[k]
ai,j and a+

i := ai − a∗i .

If c is not the canonical colouring of G, there exists some i such that a+
i ≥ 1. We are going

to roughly estimate the probability that there exists a non canonical colouring of G, through the
union bound

∑
a1,1+...+ak,1=n

. . .
∑

a1,k+...+ak,k=n

(
n

a1,1, . . . , ak,1

)
. . .

(
n

a1,k, . . . , ak,k

)
(1− p)

k∑
i=1

∑
j 6=j′

ai,jai,j′

.

• Let us first upper bound the contribution of the colourings satisfying a+
i0
≥ ε

2k
n for some

i0 ∈ [k]. Note by pigeonhole principle that a∗i0 ≥
a+
i0

k−1
≥ ε

2k(k−1)
n, and that the sum of all

multinomial coefficients is
∑

a1+...+ak=n

(
n

a1,...,ak

)
= kn. The upper bound is therefore
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∑
a1,1+...+ak,1=n

. . .
∑

a1,k+...+ak,k=n

(
n

a1,1, . . . , ak,1

)
. . .

(
n

a1,k, . . . , ak,k

)
(1− p)

k∑
i=1

∑
j 6=j′

ai,jai,j′

≤
∑

a1,1+...+ak,1=n

. . .
∑

a1,k+...+ak,k=n

(
n

a1,1, . . . , ak,1

)
. . .

(
n

a1,k, . . . , ak,k

)
e−pa

∗
i0
a+
i0

≤(kn)k n
− ε2

4k2(k−1)
n →
n→∞

0.

• We bound from above the contribution of the colourings satisfying a+
i ≤ ε

2k
n for every i ∈ [k].

Note that, for all i ∈ [k], a∗i ≤ n, and so ai = a∗i + a+
i ≤

(
1 + ε

2k

)
n. On the other hand, since

k∑
i=1

ai = kn, it means that ai ≥
(

1− (k−1)ε
2k

)
n and a∗i = ai− a+

i ≥
(
1− ε

2

)
n, for every i ∈ [k].

Therefore, for every j ∈ [k], there exists at most one value of i such that a∗i = ai,j. Without
loss of generality, we may assume that a∗i = ai,i for every i ∈ [k]. So the choice of the values
a+
i and the distribution of the corresponding colours among the sets Vj fully determines the

colouring c. For some fixed m, the contribution of the colourings satisfying
∑
i

a+
i = m is

bounded from above by

(
kn

m

)
︸ ︷︷ ︸

choice of the vertices

∑
a+

1 +...+a+
k =m

(
m

a+
1 , . . . , a

+
k

)
︸ ︷︷ ︸

attribution of the colours

(1− p)
k∑
i=1

a∗i a
+
i

≤
(
kne

m

)m ∑
a+

1 +...+a+
k =m

(
m

a+
1 , . . . , a

+
k

)
e−p(1− ε

2)nm

≤
(
k2e

m

)m
nmn−(1+ε)(1− ε

2)m

≤ ckn
− ε

4
m where ck = max

m∈N∗

(
k2e

m

)m
≤ ek

2

.

When we sum these contributions for every m ≥ 1, we obtain an upper bound of

ck
n−

ε
4

1− n− ε4
→
n→∞

0.

A lower bound on the fractional chromatic number. The study of random graphs lets
us prove in a non constructive way the existence of graphs with interesting properties. The core
of this kind of study lies in the relevant choice of the random model of graphs. By analysing a
random model closely related to d-regular graphs, Bollobás could prove the following surprising
lower bound on the (fractional) chromatic number of graphs of large girth.
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Theorem 0.3.22 (Bollobás, 1981 [18]). For every d, g ≥ 3, there exist graphs of maximum degree
at most d, girth at least g, and of fractional chromatic number at least d

2 ln d
.

The proof of Bollobás relies on two important facts on random d-regular graphs on n vertices:
asymptotically almost surely as n→∞, their independence number is of order 2n ln d/d, and they
contain no more than lnn cycles of length less than g for any fixed g. By removing one vertex
from each cycle of length less than g, the independence number remains of the same order, while
the girth of the graph becomes at least g. The fact that χf (G) ≥ n(G)/α(G) for every graph G
concludes his proof.

The random model studied in order to establish those two facts on random d-regular graphs is
obtained by considering a configuration drawn uniformly at random from the set of all configura-
tions of dn unordered pairs among 2dn labelled vertices, partitioned into 2n sets Vi. By contracting
each set Vi of a configuration into a single vertex vi, one obtains a d-regular graph on 2n vertices,
which might contain loops and multiple edges. Yet, the probability that the obtained graph is
simple and loopless is bounded away from 0, namely it tends to e−(d2−1)/4 as n grows to infinity.
As a conclusion, any event which occurs asymptotically almost surely on a random configuration
also occurs asymptotically almost surely on a (simple loopless) d-regular graph drawn uniformly
at random.

0.3.2.4 Fractional chromatic number

The fractional chromatic number combines well with probabilistic arguments, notably because of
its probabilistic formulation.

Definition 0.3.6. A fractional colouring of weight w of some graph G is a probability distribution
on I(G) such that, if I denotes a random independent set drawn according to this distribution,

∀v ∈ V (G), P [v ∈ I] ≥ 1

w
.

Theorem 0.3.23. If G is a vertex-transitive graph, then

χf (G) =
n(G)

α(G)
.

Proof. Let I be an independent set drawn uniformly at random among the collection of maximum
independent sets Iα(G) of G.

Let u 6= v ∈ V (G), and f be an automorphism of G such that f(u) = v. The automorphism
f yields a bijection between the maximum independent sets of G containing u and the maximum
independent sets of G containing v. Therefore,

P [u ∈ I] =
# {I ∈ Iα(G) | u ∈ I}

|Iα(G)|
=

# {I ∈ Iα(G) | v ∈ I}
|Iα(G)|

= P [v ∈ I] .

We have shown that P [v ∈ I] is equal to some constant p for every v ∈ V (G). We know that

α(G) = E [|I|] =
∑

v∈V (G)

P [v ∈ I] = pn(G),

and so for every v ∈ V (G),P [v ∈ I] =
α(G)

n(G)
.
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0.3.3 Local recolouring

In some classes of well enough structured graphs, it is possible to obtain colouring results through
methods of local recolouring. The idea of a recolouring process is, from a proper colouring of
all but one vertex v of a graph obtained by an inductive algorithm, to remove one colour from
the neighbourhood of v in order to colour v with this colour. This removal can be obtained by
recolouring a (relatively) small part of the graph.

In the context of graph recolouring, one of the most powerful tools are Kempe chains, which
are the key for the proof of Vizing’s theorem.

Definition 0.3.7. Let G be a graph, and c a proper colouring of G. For two given colours a, b of
c, and a vertex v ∈ V (G) such that c(v) ∈ {a, b}, we let Ha,b be the subgraph of G induced by the
vertices coloured a or b by c;

Ha,b := G
[
c−1
(
{a, b}

)]
.

The (a, b)-Kempe chain of v is the connected component of Ha,b containing v.

Given a proper partial colouring c of a graph G, the colour of a vertex v can be changed from
a to b by inverting the colours in the (a, b)-Kempe chain of v. The new colouring obtained after
this process remains a proper partial colouring of G. Such a strategy can be used to provide a
short proof of the 5-colour theorem for planar graphs, a weakening of the 4-colour theorem.

Theorem 0.3.24. For every planar graph G,

χ(G) ≤ 5.

Proof. As observed in Section 0.1.5.3, every planar graph is 5-degenerate. For the sake of contra-
diction, let G be a minimum counterexample of the theorem, so G is a planar graph with χ(G) > 5
and χ(H) ≤ 5 for every subgraph H ( G. Let v be a vertex of degree 5 in G, and let c be a proper
5-colouring of G − x. Since G is not 5-colourable, every colour appears in NG(v). Let us fix an
embedding of G in the plane, and denote v1, . . . , v5 the neighbours of v, such that they respect the
trigonometric order in the embedding of G. Without loss of generality, we assume that c(vi) = i.
If v3 is not contained in the (1, 3)-Kempe chain C1,3 of v1, we can invert colours 1 and 3 in C1,3,
and thus recolour v1 with 3 without changing the colours of the other vi’s. We can then properly
colour v with 1, which is a contradiction, so v3 must be contained in C1,3.

The subgraph G[C1,3∪{v}] separates the plane into two regions, one containing v2, and another
one containing v4 and v5. The (2, 4)-Kempe chain C2,4 of v2 cannot contain v4, for otherwise it
would cross C1,3. This cannot be done through a vertex since they are of different colours, and
this cannot be done through an edge since G is planar. Therefore, inverting the colours 2 and 4
in C2,4 recolours v2 with 4 without changing the colours of the other vi’s. We can then properly
colour v with 2, a contradiction.

0.3.4 The discharging method

The discharging method is a really efficient tool for proving results on planar graphs, when it is
associated to Euler’s formula. In a classical use, one may want to prove that a certain subclass G
of the planar graphs has some desired property P . The discharging method is then two-folds.

First, one would assume that there is a counterexample to the property P within the class
G , and would chose a minimum such counterexample G, in terms of the number of vertices, the
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number of edges, or any other minimised parameter. It is then usually possible to derive a set of
properties that G must have as a minimum counterexample of P , which most often translate into
some local configurations which cannot appear within G; we call these reducible configurations for
the property P .

Second, the discharging method enters into action in order to demonstrate that no graph in G
can avoid all the reducible configurations for P . This is done by assigning a charge to the vertices,
and/or faces, and/or edges of G such that the sum of the charges is negative — the charges have to
be chosen so that Euler’s formula can be applied to them in order to ensure this. The discharging
step then averages the value of each individual charge by transferring the excess of charge of some
objects to neighbouring objects which would have a negative charge, in such a way that, given
the set of reducible configurations of P , every object has a non negative charge in the end of the
discharging process. This raises a contradiction, and demonstrates that the property P holds in
the class G .

Hereafter is an illustration of this method of proof for a classical problem of graph colouring in
the class of planar graphs avoiding some cycles.

Theorem 0.3.25. For every planar graph G containing no cycle of length in {4, . . . , 10},

χ(G) ≤ 3.

Lemma 0.3.26 (Reducible configurations). Let G be a counterexample of Theorem 0.3.25 with
minimum number of vertices. Then

1. δ(G) ≥ 3,

2. G contains no two adjacent triangles,

3. for any non-triangular face f of G, we let nt(f) be the number of triangles incident to f ,
and n4(f) be the number of vertices of degree at least 4 incident to f . Then

2nt(f) ≤ degG(f) + n4(f).

Proof. Let G be a minimum counterexample of Theorem 0.3.25.

1. If G contains a vertex v of degree at most 2, then G− v is 3-colourable by minimality of G,
and any 3-colouring of G− v can be extended into a 3-colouring of G by assigning to v the
colour which does not appear among its neighbours. This contradicts the fact that G is not
3-colourable.

2. Two adjacent triangles would form a C4, which G does not contain.

3. Let f be a non-triangular face of G. Let f0 be a triangular face adjacent to f , and f1 be the
face adjacent to f which comes next in the trigonometric order. If f1 is a triangle, then f0

and f1 cannot be adjacent, so they share exactly one common vertex v0, which is incident to
f and of degree at least 4. Let ϕ(f0) = v0, or ϕ(f0) = f1 if f1 is a non-triangular face. The
mapping ϕ is an injection between the triangular faces adjacent to f , and the union of the
non-triangular faces and the vertices of degree at least 4 incident to f . By counting twice
each triangle adjacent to f , we obtain a value which is at most the total number of faces
adjacent to f plus the number of vertices of degree at least 4 incident to f .
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Proof of Theorem 0.3.25 (Discharging method). Let G be a minimum counterexample to the the-
orem. Let ch0 : (V (G) ∪ F (G)) → R be an initial charge function on the vertices and faces of G,
such that the charge is ch0(v) = 2 degG(v)−6 for every vertex v ∈ V (G) and ch0(f) = degG(f)−6
for every face f ∈ F (G).

By Euler’s formula and the handshaking’s lemma, we know that the total charge on G is∑
v∈V (G)

ch0(v) +
∑

f∈F (G)

ch0(f) = 2
∑

v∈V (G)

degG(v)− 6 |V (G)|+
∑

f∈F (G)

degG(f)− 6 |F (G)|

= 6
(
|E(G)| − |V (G)| − |F (G)|

)
= −12.

In order to yield a contradiction, we apply two discharging rule, which will ensure that the
charge ch(x) obtained after application of these rules is non negative for every x ∈ V (G) ∪ F (G).

1. Every triangular face receives charge 1 from each of its adjacent faces.

2. Every non-triangular face receives charge 1 from each of its incident vertices of degree at
least 4.

The charge of any degree-3 vertex v is unchanged by the discharging rules, therefore ch(v) = 0.
Let v be a vertex of degree dv ≥ 4; it is incident to at most bdv/2c triangles since no two triangles
can be adjacent. After application of the discharging rule 2, the charge of v is

ch(v) ≥ 2dv − 6− bdv/2c ≥
3

2
dv − 6 ≥ 0.

The charge of any triangular face f , after application of the discharging rule 1, is 0. Let f be a
non-triangular face of G, so of degree df ≥ 11. After application of the discharging rules 1 and 2,
Lemma 0.3.26 ensures that the charge of g is

ch(f) = df − 6 + n4(f)− nt(f) ≥
⌈
df + n4(f)

2

⌉
− 6 ≥ 0.

We have shown that the charge ch(x) is non negative on every vertex or face x ∈ V (G)∪F (G), while
the total charge on G is −12 < 0. This is the desired contradiction, so there is no counterexample
to Theorem 0.3.25.

This is not the only context in which the discharging method can be useful. In a more general
setting, it can be used in order to estimate the number of objects with some property in a graph,
or in any other combinatorial structure. If the total charge of the charge function corresponds
to the number of such objects, the discharging step provides an averaging of the number of de-
sired objects within the neighbourhoods of the vertices/edges/faces/any other configurations of
the graph, which eases the estimation of the total charge as a linear function in the number of
vertices/edges/faces/other configurations.
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0.4 Ramsey theory

After this broad general introduction of graph theory, graph colouring, and the usual general
methods to prove results in this domain, let me focus more precisely on one specific branch of
research which has been inspirational for most of the content in this thesis. This is Ramsey theory,
which informally seeks for regularities among disorder.

0.4.1 Ramsey’s theorem

One of the most fundamental results in Ramsey theory, which later gave its name to the theory,
is Ramsey’s theorem, which can be formulated as follows in the context of finite graphs.

Theorem 0.4.1 (Ramsey, 1930 [103]). Given any two integers s, t ≥ 1, there exists some integer
R(s, t) such that any graph G on n ≥ R(s, t) vertices contains either a clique of size s, or an
independent set of size t.

The integer R(s, t) is the minimum value for which Theorem 0.4.1 holds, and is called the
Ramsey number of parameters s and t. Note that if G is a graph on n vertices with either a clique
of size s or an independent set of size t, then G is a graph on n vertices with either a clique of
size t or an independent set of size s. Therefore, R(s, t) = R(t, s) for any integers s, t ≥ 1. It is
also straightforward that R(2, t) = t for any integer t ≥ 1, since a graph which does not contain
any clique of size 2, that is with no edge, is itself an independent set. This remark together with
a simple inductive argument proves Ramsey’s theorem in a quantitative way, as was first proved
by Erdős and Szekeres in 1935.

Theorem 0.4.2 (Erdős, Szekeres, 1935 [40]). For all integers s, t ≥ 2,

R(s, t) ≤ R(s− 1, t) +R(s, t− 1),

and so by induction

R(s, t) ≤
(
s+ t− 2

s− 1

)
.

Proof. Let G be a graph on R(s − 1, t) + R(s, t − 1) vertices. Let v ∈ V (G) be any vertex, then
either |N(v)| ≥ R(s− 1, t) or N(v) ≥ R(s, t− 1). In the former case, G[N(v)] either contains an
independent set of size t, and so does G, or it contains a clique W of size s − 1 which may be
extended into the clique W ∪{v} of size s in G. The latter case is treated in a symmetric way.

The upper bound on R(s, t) in Theorem 0.4.2 is still the best known one in the general case.
Determining the exact value of R(s, t) for specific values of s and t is a really hard problem, and
has been solved only for small values of s and t through computer search.

There are two specific settings of the Ramsey numbers which have raised a particular interest.
Those are the diagonal Ramsey numbers R(s, s) for any s ≥ 3, and the off-diagonal Ramsey
numbers R(3, t) for any t ≥ 3.

In the case of the diagonal Ramsey numbers, Theorem 0.4.2 yields the upper bound

R(s, s) ≤
(

2s− 2

s− 1

)
.

s→∞

4s−1

√
πs
.
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Erdős [39] was the first to provide an exponential lower bound on the diagonal Ramsey number
R(s, s). This bound has then been improved by a factor 2 by Spencer in 1975 [111], and there has
been no further improvement since then.

Theorem 0.4.3 (Erdős, 1947 [39]). For every s ≥ 3,

R(s, s) ≥ s

e
√

2
2s/2.

Proof. Let s ≥ 3 and N < s
e
√

2
2s/2 be fixed integers. The number of graphs on N labelled vertices

which contain a fixed clique of size s is

2(N2 )−(s2),

and therefore the number of graph on N labelled vertices which contain at least one clique of size
s is less than (

N

s

)
2(N2 )

2(s2)
<

2(N2 )

2
. (5)

Indeed, using the lower bound s! ≥ (s/e)s
√

2πs given by Stirling’s formula for any integer s, we
know that (

N
s

)
2(s2)

<
N s

s! · 2(s2)

<
N s

(s/e)s
√

2πs · 2(s2)

<

(
N

s/e · 2(s−1)/2

)s
1√
2πs

<
1√
2πs

<
1

2
.

We know by (5) that less than half of all the graphs on N labelled vertices contain at least one
clique of size s. This ensures that there exists a graph G on N vertices such that neither G nor G
contains a clique of size s, which concludes the proof.

This proof was fundamental as a demonstration of the importance of the probabilistic method,
which was introduced by Erdős and is central — even in its most basic form — in this thesis.
It illustrates how it is possible to ensure the existence of a graph with a specific property in a
non-constructive way, by showing that a random graph would have this property with non-zero
probability. This argument is impressive both for its surprising simplicity, and its exceptional
strength. Indeed, there is still no known non-probabilistic construction of a graph which would
certify an exponential lower bound on R(s, s).

More than 70 years later, the multiplicative gap of 4 that lies between the lower and upper
bounds on log2R(s, s) given by Theorems 0.4.2 and 0.4.3 has not been improved by any non-
negligible value;

s/2 < log2R(s, s) < 2s. (6)

It is an open question of Erdős whether lim
s→∞

log2R(s, s)

s
exists [44]. There are $100 to earn for

the proof of its existence, or $10000 for the proof of its non-existence. Furthermore, in case of its
existence, there are extra $250 to earn for the determination of its exact value.
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0.4.2 Off-diagonal Ramsey numbers

By definition, the off-diagonal Ramsey number R(3, t) provides a correlation between the number
of vertices and the independence number in a triangle-free graph. Indeed, there is an equivalence
between R(3, t) ≤ f(t) and α(G) ≥ f−1(n(G)) for every triangle-free graph G, given any bijective
function f : R+ → R+. Triangle-free graphs have the special property that every neighbourhood
is an independent set. Therefore, in a triangle-free graph G, it holds that

α(G) ≥ ∆(G).

Let me make a small digression before continuing. Because of this property, triangle-free graphs
with large minimum degree have a lot of large independent sets, to the point that there exists a
threshold such that they can be coloured with a constant number of colours. This was a problem
of Erdős and Simonovits [47]. If G is a triangle-free graph of minimum degree δ, then δ > 2

5
n(G)

ensures that G is bipartite [10]; δ > 10
29
n(G) ensures that χ(G) ≤ 3 [64]; δ > 1

3
n(G) ensures that

χ(G) ≤ 4 [23]; and the Kneser graph Kk,3k−1 demonstrates that there exist triangle-free graphs
with arbitrarily large chromatic number, and minimum degree arbitrarily close to 1

3
of their number

of vertices.

Going back to the general case, we have already seen that the maximum degree of G is a
fundamental parameter when it comes to properly colouring G, which lets us find large independent
sets in G. Notably, the largest colour class of a proper colouring of G produced by any greedy
algorithm is of size at least

n(G)

∆(G) + 1
,

and this immediately yields that

α(G) ≥ max

(
∆(G),

n(G)

∆(G) + 1

)
≥
√
n(G)− 1.

From this, we can derive the upper bound R(3, t) ≤ (t + 1)2, which is worse than the upper
bound R(3, t) ≤

(
t+1

2

)
yielded by Theorem 0.4.2 roughly by a factor of 2. Although this is close to

the right asymptotic order, this can be improved. Indeed, the bound α(G) ≥ n(G)
∆(G)+1

is not sharp
for triangle-free graphs in general, especially as ∆ grows, and the right order of magnitude was
found in 1980 by Ajtai, Komlós, and Szemerédi [2].

Theorem 0.4.4 (Ajtai, Komlós, Szemerédi, 1980 [2]). For every triangle-free graph G,

α(G) ≥ 0.01
ln ad(G)

ad(G)
n(G).

In particular, this implies that

R(3, t) = O
t→∞

(
t2

ln t

)
.

This was later improved by Shearer in 1983 [108] through an elegant inductive argument. This
provides the best known asymptotic upper bound on the independence number of triangle-free
graphs of fixed density.
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Theorem 0.4.5 (Shearer, 1983 [108]). For every triangle-free graph G of average degree d,

α(G)

n(G)
≥ d ln d− d+ 1

(d− 1)2
∼

d→∞

ln d

d
.

In particular, this implies that

R(3, t) .
t→∞

t2

ln t
.

One of the main motivations of this thesis is to generalise Theorem 0.4.5 in several qualitative
and quantitative ways. Namely, instead of excluding triangles, we may exclude other cycles, or
allow only a bounded proportion of them to appear. We also focus on refined versions of the
independence number, like the average size of an independent set, or the fractional chromatic
number.

0.4.3 Random graphs are mostly extremal in Ramsey theory

Random graphs provide the most extremal constructions that we know in Ramsey theory. This is
true to the point that in most scenarios, there is no known deterministic construction which can
reach the same order of magnitude as random graphs with respect to the relevant parameters.

The most direct application of random graphs in Ramsey theory arises in diagonal Ramsey
numbers, since a random graph certifies the left hand-side of (6) asymptotically almost surely.

Theorem 0.4.6 (cf. Erdős [39]). Let G be drawn from G(n, 1/2). Then asymptotically almost
surely,

ω(G) ≤ 2 log2 n, and

α(G) ≤ 2 log2 n.

Proof. We prove that asymptotically almost surely, there is no clique of order larger than 2 log2 n
in G. Let k ≥ 2 log2 n+ 1 be a fixed integer. Given any subset of k vertices in G, the probability

that they form a clique is 2−(k2). Let X be the random variable counting the number of cliques of
size k in G. By linearity of expectation,

E [X] =

(
n

k

)
2−(k2).

We apply Markov’s inequality and deduce that the probability that there exists a clique of size k
in G is

P [X ≥ 1] ≤ E [X] ≤ nk

k!
2−k(k−1)/2

≤ 1

k!

( n

2(k−1)/2

)k
≤ 1

k!
→
n→∞

0.

This concludes that indeed asymptotically almost surely, a graph drawn from G(n, 1/2) contains
no clique of size k.

Since G is also drawn from G(n, 1/2), there is asymptotically almost surely no clique of size
k in G, and therefore no independent set of size k in G. The conclusion follows from a union
bound.
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The application of random graphs for off-diagonal Ramsey numbers gets a bit more complicated.
Recall from Section 0.3.2.3 that random d-regular graphs almost surely have independence ratio
at most 2 ln d/d, and since they can be made triangle-free by removing a sub-linear number of
vertices, they certify the sharpness of the first half of Theorem 0.4.5 up to an asymptotic factor
2. This however is true only when d is fixed, by letting n→∞, and so cannot directly provide a
lower bound on R(3, t).

In 1961, Erdős [43] proved a lower bound of the form R(3, t) = Ω((t/ ln t)2), again with the
help of the probabilistic method. This result was reiterated later by Spencer [112] with an explicit
constant and a shorter proof relying again on random graphs, which we sketch hereafter.

Theorem 0.4.7 (Spencer, 1977 [112]).

R(3, t) ≥
(

1

27
− o(1)

)(
t

ln t

)2

Sketch of the proof. In order to prove this result, Spencer considers a graph G drawn from G(n, p),
by fixing p = 1/

√
3n. He shows through an application of LLL that, with non-zero probability,

the independence number of G is at most t =
(
3
√

3/2 + o(1)
)√

n lnn and G is triangle-free. This
yields the result by expressing n in terms of t.

This lower bound was however still not of the right order. In order to improve it using a graph
G drawn from G(n, p), one would need to use a value of p with a larger order of magnitude, namely

p = Θ
(√

lnn/n
)

in order to obtain an independence number α(G) = Θ
(√

n lnn
)

with non-zero

probability. Unfortunately, it seems no longer possible to ensure that G is moreover triangle-free
with non-zero probability in this setting.

In 1995, Kim [79] obtained the right order of magnitude of R(3, t) in a breakthrough paper,
using some random model of triangle-free graphs relying on the Rödl nibble. This method consists
in repetitively selecting a small random fraction of possible edges to add in a random triangle-free
graph.

Theorem 0.4.8 (Kim, 1995 [79]).

R(3, t) = Θ

(
t2

ln t

)
.

Kim’s lower bound was then improved substantially through a thorough analysis of the triangle-
free process [15, 16, 52]. This process selects a random maximal triangle-free graph on a fixed
number of vertices as follows.

(i) Start with G0 being an independent set of size n, and fix a random ordering of all
(
n
2

)
pairs

of vertices.

(ii) At step i ≥ 1, let ei be the edge corresponding to the i-th pair of vertices. Then

Gi :=

{
Gi−1 + ei if Gi−1 + ei is triangle-free,

Gi−1 otherwise.

The random triangle-free graph obtained at the end of the triangle-free process is denoted Gn,∆.
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Theorem 0.4.9 (Bohman, Keevash, 2013+ [16]; Fiz Pontiveros, Griffiths, Morris, 2013+ [52]; cf.
also [15]). Asymptotically almost surely,

∆(Gn,∆) = (1 + o(1))

√
n lnn

2
,

α(Gn,∆) = (1 + o(1))
√

2n lnn.

In particular, this implies that
t2

4 ln t
.
t→∞

R(3, t) .
t→∞

t2

ln t
. (∗)

To this date, (∗) is the best known asymptotic estimation of R(3, t). This is a reference for
the sharpness of the results that we will present throughout this thesis. In particular, most of
them will imply one side of (∗), which means that they are best possible barring a breakthrough
in quantitative Ramsey theory.

0.4.4 Hard-core distributions

Let S be a given set of elements, and F be a family of subsets of S. For every real λ > 0, a
random subset X drawn from the hard-core distribution on F at fugacity λ satisfies

P [X = X] =
λ|X|

ZF (λ)

for every X ∈ F , where

ZF (λ) =
∑
X∈F

λ|X|

is the partition function of F . Given an element x ∈ S, we say that x is occupied if x ∈ X. The
occupancy fraction is then defined to be the average probability of an element of S being occupied,
that is

E [|X|]
|S|

.

When λ ≤ 1, the occupancy fraction is therefore a lower bound on the average size of an element
in F .

Note that the hard-core distribution on F at fugacity λ corresponds to the uniform distribution
on F when λ = 1, and to the uniform distribution on the elements of F of maximal cardinality
when λ =∞.

In general, we may allow λ to be a function from S to the positive reals, in which case λ|X| is
replaced by

∏
x∈X

λ(x). However, all the applications of the hard-core distributions throughout this

thesis will use a constant fugacity λ.
These distributions are used in statistical physics, and more specifically in condensed matter

physics. They happen to be of particular interest when used with the probabilistic method in
combinatorics, notably because of their spatial Markov property .

Proposition 0.4.10 (Spatial Markov Property). Let F ⊆ 2S be a family of subsets of a given set
of elements S, and fix some T ⊆ S.

Let Y ⊆ S \ T be fixed, and set FY = {X ⊆ T | X ∪ Y ∈ F} to be the family of subsets of T
which extend Y into an element of F .
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For every real λ > 0, if X follows the hard-core distribution on F at fugacity λ, then conditioned
on the fact that X \ T = Y , X ∩ T follows the hard-core distribution on FY at fugacity λ.

Proof. Conditioned on the fact that X\T = Y , the set of possible realisations of X∩T is precisely
FY by definition. Now, for every X ∈ FY ,

P [X ∩ T = X | X \ T = Y ] = P [X = X ∪ Y ] =
λ|X∪Y |∑

X′∈FY

λ|X′∪Y |
=

λ|X|∑
X′∈FY

λ|X′|
· λ
|Y |

λ|Y |
=

λ|X|

ZFY
(λ)

.

The strength of the spatial Markov property lies in the possibility to perform a local analysis
of a global random model. For this reason, hard-core distributions are helpful in order to analyse
the behaviour of matchings, independent sets, and different kinds of colourings of various classes
of graphs with local constraints.

In 1996, Kahn [68] used the hard-core distributions in the framework of graph theory in order
to prove an asymptotic result on the chromatic index of multigraphs, namely that it asymptotically
matches its fractional counterpart. In this setting, given a multigraph G, the set of elements S
is the set of edges E(G), and the family F is the family of all matchings M(G). More recently,
hard-core distributions have been proven useful when applied on the independent sets, notably in
order to prove a version of Theorem 0.4.5 for occupancy fraction. In this setting, S is the set of
vertices of a triangle-free graph G, and F is its whole family of independent sets I(G).

Theorem 0.4.11 (Davies, Jenssen, Perkins, Roberts, 2018 [34]). Given a triangle-free graph G
of maximum degree ∆ ≥ 3, let I be a random independent set drawn according to the hard-core
distribution on I(G) at fugacity λ = 1/ ln ∆. Then the occupancy fraction of I is

E [|I|]
n(G)

&
∆→∞

ln ∆

∆
.

In particular, since λ ≤ 1, this is a lower bound on the average size of an independent set in G.

Throughout Chapter 1, we will use hard-core distributions in the setting of independent sets
with various regimes in order to prove several results on fractional colourings of sparse graphs,
which generalise Theorem 0.4.11.

0.4.5 Random colourings of triangle-free graphs

We have seen so far that random graphs are mostly extremal in off-diagonal Ramsey theory. More
precisely, the independence number of a triangle-free graph of fixed density is at least half that of
a random triangle-free graph of the same density, as is stated in Theorem 0.4.5. It is important
to mention here that the methods determining the value of the independence number of random
graphs drawn from G(n, p), or random regular graphs, are all non constructive; they rely on the
probabilistic method. To this date, no polytime algorithm is known to return an independent
set of size more than half the independence ratio of a given random graph, and it has even been
conjectured by Karp in 1976 [74] that no such algorithm exists. This is called the algorithmic gap,
and it has been justified to some extent by an analysis of the geometry of the space formed by
the independent sets of fixed size k in random graphs [28]. It is shown that there is a threshold
at k ∼ n ln d/d, where n is the number of vertices and d the average degree of the random graph,
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above which independent sets of size k form highly disconnected small clusters. This explains why
local exploration algorithms fail at finding independent sets of size above that threshold, while
it is known that there exist some of size k ∼ 2n ln d/d. So, if we restrict to independent sets
which we know how to find in an efficient way, random graphs are asymptotically extremal among
triangle-free graphs.

In this subsection, we discuss how this fact extends to the case of proper colourings. Like for
independence number, there is an algorithmic gap for the chromatic number of random graphs of
fixed density d. The greedy colouring algorithm will return a proper k-colouring where k ∼ d/ ln d
asymptotically almost surely [89], while the probabilistic method ensures in a non constructive
way that there exists a proper k-colouring where k ∼ d/(2 ln d) asymptotically almost surely [54].

In a proper random colouring of a triangle-free graph G of maximum degree ∆, the coupon
collector problem gives insight in the needed number of colours. Indeed, if you assume that the
colours in the neighbourhood of a given vertex v ∈ V (G) are drawn independently uniformly at
random from [k], the number of neighbours that v needs to have for all the k colours to appear in
N(v) is then k ln k. So if ∆ < k ln k, there is a good chance that there remains a colour available
for v after its neighbours have been coloured randomly.

Of course, we cannot assume independence between the colours which are assigned to the
neighbours of v in a random proper colouring. However, Kim [78] managed to prove that with
graphs of girth 5, the insight given by the coupon collector problem was correct.

Theorem 0.4.12 (Kim, 1995 [78]). Let ε > 0 be fixed. For every graph G of girth at least 5, and
maximum degree ∆ large enough,

χ`(G) ≤ (1 + ε)
∆

ln ∆
.

The proof relies again on the Rödl nibble. Instead of colouring the whole graph in one round,
Kim colours it with a succession of random rounds where only a small random fraction of the
vertices select a uniformly random colour from their (updated) list, and every pair of conflicting
vertices are uncoloured. By carefully keeping track of the size of the lists, and of the number of
uncoloured neighbours at each round, this random colouring process is shown to achieve at some
point a partial proper colouring where every uncoloured vertex v has a list of available colours of
size |L(v)| ≥ `, and for every colour x ∈ L(v) no more than `/8 neighbours u such that x ∈ L(u),
for some value of `. At this point, it is possible to extend the partial proper colouring into a proper
colouring of the whole graph with non-zero probability through a last random round, the finishing
blow , where every uncoloured vertex picks a uniformly random colour from their list.

The case of triangle-free graphs was more complicated because there were more dependencies
between the bad events when trying to apply the Rödl nibble. Eventually though, Johansson [65]
was able to adapt Kim’s proof up to a worse multiplicative constant through an involved analysis
of the Rödl nibble, which was never published.

Theorem 0.4.13 (Johansson, 1996 [65]). There exists an absolute constant C > 0 such that, for
every triangle-free graph of maximum degree ∆,

χ`(G) ≤ C · ∆

ln ∆
.

More than 20 years later, a breakthrough was achieved by Molloy [90], who used a new proba-
bilistic method, entropy compression, in order to randomly colour triangle-free graphs. He obtained
a bound matching Kim’s one for graphs of girth 5. A few months later, Bernshteyn [13] simplified
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the proof of Molloy, notably by replacing the use of entropy compression by a direct application of
LLL. The strength of his proof relied in the fact that he was able to analyse directly a uniformly
random partial proper colouring of any given triangle-free graph G, with the help of the lopsided
LLL which works even when the random events have no mutual independence.

Theorem 0.4.14 (Molloy, 2019 [90]; Bernshteyn, 2018 [13]). Let ε > 0 be fixed. For every
triangle-free graph G of maximum degree ∆ large enough,

χ`(G) ≤ (1 + ε)
∆

ln ∆
.

Overview of the proof. We overview here the ideas behind the proof of Bernshteyn, which is simpler
and on which we rely in order to prove a generalised version of Theorem 0.4.14 in Chapter 1.

Let G be a triangle-free graph of maximum degree ∆ large enough in terms of ε, and L be
a list-assignment of G satisfying |L(v)| = (1 + ε)∆/ ln ∆ for every vertex v ∈ V (G). Fix also
` := ∆ε/2.

The proof consists in finding a random proper L-colouring of G in two steps. The first step
draws a partial proper L-colouring c uniformly at random (by adding an artificial colour Blank to
every list, which stands for the vertex being left uncoloured if it is drawn). After this first step,
we let L′(v) := L(v) \ c(N(v)) be the list of available colours left for every uncoloured vertex v.
With non-zero probability, for every uncoloured vertex v of G, it holds that

(i) |L′(v)| ≥ `, and

(ii) for every colour x ∈ L′(v), the number of neighbours u of v such that x ∈ L(u) is at most
`/2.

This is shown first by showing that the corresponding random bad events happen with small
probability, with an application of Chernoff’s inequality.

Claim. Let v ∈ V (G) be a fixed vertex, and c0 be a fixed partial proper colouring of G
[
N [v]

]
.

We let L0 be the list assignment of N(v) induced by L after removal of the colours in conflict with
c0. For a uniformly random partial proper L0-colouring c of N(v), it holds that

(i) P [|L(v) \ c(N(v))| < `] ≤ (2∆)−3, and

(ii) P [∃x ∈ L(v) \ c(N(v)),# {u ∈ N(v) | c(u) = Blank and x ∈ L0(u)} > `/2] ≤ (2∆)−3.

The conclusion holds by noting that a uniformly random partial proper colouring c of G has the
spatial Markov property, and so by conditioning on c \N [v] = c0 for any v ∈ V (G), the outcome
of c∩N(v) is a uniform random partial proper L0-colouring of N(v), which lets us apply the claim
together with the lopsided LLL.

The final step, referred to as the finishing blow , consists in drawing one colour independently
uniformly at random from L′(v) for every uncoloured vertex v of G. This extends c into a proper
L-colouring of G with non-zero probability, as can be shown using LLL.





Chapter 1

Independent sets and local colourings of
sparse graphs

Given a hereditary class of graphs G (closed by induced subgraphs), we say that G is a class of
dense graphs if

∀G ∈ G , e(G) = Θ
(
n(G)2

)
,

and on the other hand we say that G is a class of sparse graphs if

∀G ∈ G , e(G) = o
(
n(G)2

)
.

Equivalently, in a hereditary class of sparse graphs, the maximum average degree of a graph on n
vertices is o(n). We have seen in the introduction that the maximum average degree is an upper
bound on the degeneracy of a graph, which itself is an upper bound of the chromatic number minus
one. So sparse graphs are easier to colour.

In general, the notion of sparse graphs is extended to locally sparse graphs, which are graphs
where each neighbourhood induces a sparse graph. With this extended definition of sparseness,
the first class of (locally) sparse graphs which comes to mind is the class of triangle-free graphs,
that is the class of graphs where each neighbourhood induces an independent set.

In triangle-free graphs, the maximum average degree is not sublinear in the number of vertices
in general; this can be illustrated with complete bipartite graphs. However, those graphs are the
densest ones among the class of triangle-free graphs, as was demonstrated by Mantel in 1907 [88].

Theorem 1.1 (Mantel, 1907 [88]). In any triangle-free graph G,

e(G) ≤
⌊
n(G)2

4

⌋
,

with equality if, and only if, G ∼= Kdn/2e,bn/2c for some n ∈ N.

Noting that the densest possible triangle-free graphs — so intuitively the hardest to colour —
are actually bipartite, one could wonder whether the chromatic number of any triangle-free graph
is bounded. We have already seen in the introduction of this thesis that it is far from being the
case. The first ever construction of a family of triangle-free graphs of unbounded chromatic number
is the one of Zykov in 1949 [121] — interestingly enough, the chromatic number of any graph of
this family is exactly one plus its degeneracy, demonstrating that this natural upper bound of the
chromatic number is sharp in the class of triangle-free graphs. The construction of Mycielski in

75



76CHAPTER 1. INDEPENDENT SETS AND LOCAL COLOURINGS OF SPARSE GRAPHS

1955 [95] provides another example of a family of triangle-free graphs with unbounded chromatic
number, with much fewer vertices — in fact, the Mycielski graphs M0,M1,M2, and M3 reach the
minimum possible number of vertices in a triangle-free graph of chromatic number respectively
1, 2, 3, and 4.

It was then quickly established that the chromatic number is unbounded also in sparser classes
of graphs, namely of higher girth. Kelly and Kelly constructed a family of graphs of girth 6 with
unbounded chromatic number in 1954 [75]. In 1966, an explicit family of girth 8 was constructed
by Nešetřil [96], and two years later Lovász [84] achieved the last step of constructing such a family
of arbitrary large girth.

The existence of such a family had actually been known for almost a decade, since using the
probabilistic method, Erdős [42] had proved in 1959 that the class of graphs of any fixed girth g
has unbounded chromatic number. He did so through the so-called deletion method, which was a
milestone of probabilistic methods applied to graph theory. The same deletion method was used
two decades later by Bollobas in 1981 [18] to exhibit his more explicit lower bound of d/(2 ln d)
for the maximum of the chromatic number among d-regular graphs of arbitrary large girth, which
we discussed in Section 0.3.2.3.

Since the chromatic number of the class of graphs of arbitrary large girth is unbounded, one
needs another parameter in order to restrain it, and thus establish interesting bounds on it. A
possible one would be the density, which is captured in particular by the degeneracy. But since
Zykov’s construction demonstrates that d + 1 is a sharp bound for the chromatic number of d-
degenerate triangle-free graphs, it appears that the degeneracy is not a relevant choice.

The first ever result in the other direction, which provides an upper bound on the chromatic
number in a given class of sparse graphs, was obtained by Borodin and Kostochka in 1977 [22]
by considering graphs of bounded maximum degree and clique number. What they proved is the
following.

Theorem 1.2 (Borodin, Kostochka, 1977 [22]). For every graph G of maximum degree ∆(G) ≥ 3,

χ(G) ≤ ∆(G)−
⌊

∆(G)−max(3, ω(G))

max(3, ω(G)) + 1

⌋
.

So in particular for every K4-free graph G of maximum degree at least 3,

χ(G) ≤
⌈

3(∆(G) + 1)

4

⌉
.

This first chapter revolves around the celebrated result of Johansson on the chromatic number
of triangle-free graphs of bounded maximum degree.

Theorem 1.3 (Johansson, 1996 [65]). There exists an absolute constant C > 0 such that, for
every triangle-free graph G,

χ(G) ≤ C
∆(G)

ln ∆(G)
.

This result was a milestone in the domain of sparse graphs colouring, since it provides an upper
bound asymptotically optimal, up to some multiplicative constant. This opened a new branch
of research in the area, so that the chromatic number of triangle-free graphs is now a classic
topic, and has been deeply studied from many perspectives, including algebraic, probabilistic, and
algorithmic. It is attractive because of its elegance and its close connection to quantitative Ramsey
theory [3, 108].
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In this chapter, we consider sparse graphs on different levels. While triangle-free graphs are the
flagships of sparse graphs, we also strengthen the sparsity by considering graphs of higher girth,
or loosen it by considering graphs which have the property that all their neighbourhoods contain
only a fraction of the maximum possible number of edges, or equivalently that all their vertices
belong to a bounded number of triangles.

Throughout this chapter, we will alternate between the consideration of independent sets,
fractional colourings, and DP-colourings — a generalisation of list colourings — in sparse graphs.
We also introduce a notion of locality in all of our colouring results. The content of this chapter
is mainly covered by the three submitted articles [31, 32, 101].

1.1 Context and presentation of the results

1.1.1 Triangle-free graphs

Recently, Molloy [90] obtained a breakthrough in the domain of triangle-free graph colourings. He
used entropy compression, a new powerful probabilistic tool, in order to show that, given ε > 0,
every triangle-free graph of maximum degree ∆ has chromatic number at most d(1 + ε)∆/ ln ∆e,
provided ∆ is sufficiently large. This achievement improved on the seminal work of Johansson [65]
in two ways, one by lowering the leading asymptotic constant (perhaps even to optimality) and the
other by giving a much simpler proof. Molloy’s result actually holds for the list chromatic number
of triangle-free graphs, an even stronger statement. This result provoked a resurgence of interest
in the domain, and several related works emerged soon afterwards.

Theorem 1.1.1 (Molloy, 2019 [90]). Let ε > 0 be fixed. There exists ∆ε such that every triangle-
free graph G of maximum degree ∆ ≥ ∆ε satisfies

χ(G) ≤ (1 + ε)
∆

ln ∆
.

Among those, a notable one was proposed by Bernshteyn [13]. He proved again Molloy’s
result, by using LLL instead of entropy compression, thus demonstrating that the breakthrough
from Molloy was not due to a supposed superiority of the entropy compression method compared
to the LLL. He also extended the result to hold in the context of DP-colourings, a generalisation
of list colourings proposed by Dvořák and Postle [36]. The idea behind DP-colouring is, given any
list assignment L of the vertices of a graph G, and given a permutation of the colours σuv for every
ordered pair uv ∈ E(G) (such that σvu = σ−1

uv ), to find a colour c(v) ∈ L(v) for every vertex v,
such that for every edge uv ∈ E(G), it holds that c(u) 6= σuv(c(v)). Note that a list colouring
corresponds to a special instance of a DP-colouring where σuv = id for every edge uv ∈ E(G).

In this chapter, we aim to extend results on colourings of triangle-free graphs, and more gen-
erally of sparse graphs, in a local setting. This has a natural interest in many applications. For
instance, if we consider the use of fractional colourings in parallel computing as presented in Sec-
tion 0.2.7.2, a local fractional colouring would ensure that some tasks are finished before the end
of the whole process, namely the ones corresponding to vertices easier to colour in the conflict
graph.

A local list colouring relies on a list assignment with variable list sizes, depending on each vertex.
Since the maximum degree is a key parameter for bounding from above the (list) chromatic number
of a graph, it is natural to consider a list assignment L where the size of L(v) is a (non-decreasing)
function of deg(v), for every vertex v. Indeed one might expect the low degree vertices to be easier
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to colour in a quantifiable way. The general idea of having “local” list sizes is far from new; it
can be traced at least back to degree-choosability as introduced in one of the originating papers
for list colouring [41]. Recently Bonamy, Kelly, Nelson, and Postle [19] initiated a modern and
rather general treatment of this idea, including with respect to triangle-free graphs (a conjecture
of King [80] and related work are in the same vein). We show the following result.

Theorem 1.1.2. Fix ε > 0, let ∆ be sufficiently large, and δ = (72 ln ∆)2/ε. Let G be a triangle-free
graph of maximum degree ∆ and L : V (G)→ 2N be a list assignment of G such that

|L(v)| ≥ (1 + ε) max

{
deg(v)

ln deg(v)
,
δ

ln δ

}
for every vertex v ∈ V (G). Then there exists a proper L-colouring of G.

This can be considered a local strengthening of Molloy’s theorem. When the graph G in The-
orem 1.1.2 is of minimum degree δ, the list size condition is local in the sense that the lower
bound on |L(v)| reduces to a function of deg(v) and no other parameter of G. Theorem 1.1.2 (or
rather the stronger Theorem 1.2.2 below) improves the asymptotic leading constant 4 ln 2 of [19,
Thm. 1.12] to 1, at the expense of requiring a larger minimum list size. Our proof relies heavily
on the work of Bernshteyn [13]. For Theorem 1.1.2, it has sufficed to prove a local version of the
so-called “finishing blow” (see Lemma 1.2.1 below) and to notice that there is more than enough
slack in Bernshteyn’s (and indeed Molloy’s) argument to satisfy the new blow’s hypothesis.

We also provide a local version of Molloy’s theorem for fractional colourings. To this end, we
use a definition of fractional colourings compatible with local parameters. Writing I(G) for the
set of independent sets of G, and µ for the standard Lebesgue measure on R, a fractional colouring
of a graph G is an assignment w : I(G) → P(R) of pairwise disjoint measurable subsets of R to
the independent sets of G such that, for every vertex v ∈ V (G), the induced assignment

w(v) :=
⋃

I∈I(G)
v∈I

w(I)

is of measure ŵ(v) := µ
(
w(v)

)
≥ 1. In actuality, we may and will only use subset which each

consist in a finite disjoint union of intervals, so that there Lebesgue measure is simply the (finite)
sum of the lengths of those intervals. It naturally holds that w(u) and w(v) are disjoint whenever
uv ∈ E(G). The total weight of the fractional colouring is ŵ(G) :=

∑
I∈I(G)

µ(w(I)).

Theorem 1.1.3. Let ε > 0 be fixed. There exists δε > 0 such that every triangle-free graph G
admits a fractional colouring w where, for every vertex v ∈ V (G),

w(v) ⊆
[
0, (1 + ε) max

{
deg(v)

ln deg(v)
,
δε

ln δε

}]
.

Again, when G is of minimum degree δε, our condition on w(v) reduces to a function of deg(v)
alone, yielding a local condition. Clearly Theorem 1.1.3 is not implied by Molloy’s theorem nor is
the converse true, but both results imply that the fractional chromatic number of a triangle-free
graph of maximum degree ∆ is at most (1 + o(1))∆/ ln ∆. We believe that the main interest
in Theorem 1.1.3 will be in its derivation. We give a short and completely self-contained proof
by performing a local analysis of the hard-core model in triangle-free graphs (Lemma 1.4.4), and
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demonstrate that to obtain the desired result it suffices to feed the hard-core model as input to a
greedy fractional colouring algorithm (Lemma 1.3.1). Since it makes no use of the Lovász Local
Lemma, the proof is unlike any other derivation of a Johansson-type colouring result (regardless
of local list sizes). This may be of independent interest.

The asymptotic leading constant of 1 in the conditions of both Theorems 1.1.2 and 1.1.3 cannot
be improved below 1/2 due to random regular graphs [54]. In fact, as a corollary of either result
we match asymptotically the upper bound of Shearer [108] for off-diagonal Ramsey numbers. So
any improvement below 1, or even to 1 precisely (i.e. removal of the ε term), would be a significant
advance. The relative sharpness of the colouring results can be contextualised by the analysis of
the independence ratio of sparse graphs.

The result of Molloy, and our extensions in Theorem 1.2.2 and Theorem 1.1.2 all suffer from
the same lack of consideration of vertices of small degree. Namely, for any degree d smaller than
∆ε or δε, none of these theorems provides a satisfactory explicit value of the amount of colour
needed to colour the vertices of degree at most d in a sparse graph. To this date, the best known
general upper bound in terms of clique number and maximum degree for the fractional chromatic
number is due to Molloy and Reed [93, Theorem 21.7, p. 244].

Theorem 1.1.4 (Molloy and Reed, 2002 [93]). For every graph G,

χf (G) ≤ ω(G) + ∆(G) + 1

2
.

If one considers a convex combination of the clique number and the maximum degree plus one
for an upper bound on the (fractional) chromatic number of a graph, then because the chromatic
number of a graph never exceeds its maximum degree plus one, the aim is to maximise the coeffi-
cient in front of the clique number. The convex combination provided by Theorem 1.1.4 (which is
conjectured to hold also for the chromatic number once rounded up), is best possible. Indeed, for
every positive integer k the graph Gk := C5 �Kk is such that

ω(Gk) = 2k,

∆(Gk) = 3k − 1,

χf (Gk) =
5k

2
=
ω(Gk) + ∆(Gk) + 1

2
.

By increasing the sparsity condition on the considered graph from being triangle-free to hav-
ing girth at least 7, we can provide local fractional colourings which do not require any special
consideration of the vertices of small degree.

Theorem 1.1.5. Set γ(x) := min
k∈N≥3

2x+ 2k−3 + k

k
.

Every graph G of girth at least 7 admits a fractional colouring w where, for every vertex v ∈ V (G),

w(v) ⊆
[
0, γ(deg(v))

]
.

In particular, χf (G) ≤ γ(∆(G)).

Remark 1.1.1. In Theorem 1.1.5, when x ≥ 3, the minimum of the function γ is attained in
k = b4 + log2 x− log2 log2 xe. More generally, when x ≥ 0, the minimum is attained for a value of
k greater or equal to 4. The asymptotic behaviour of γ is therefore γ(x) = (2 ln 2 + o(1))x/ lnx,
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and this is off by a multiplicative factor 2 ln 2 from Molloy’s result for large degrees. However, up
to x of the order of 107, the value γ(x) is smaller than the bound for a triangle-free graph G of
maximum degree x which can be derived from the proof of Theorem 1.1.2, namely

χf (G) ≤ min
λ>0

λ+ 1

λ
eW (x ln(1+λ)),

where W is the Lambert function, defined as the reciprocal of the function z 7→ zez.

1.1.2 Independence ratio and girth

Independent sets in graphs are fundamental objects, at the heart of several problems and notions
such as graph colouring. Of particular interest is the order α(G) of a largest independent set in
a graph G, which often is divided by the number of vertices of G: this is the independence ratio
of G,

ir(G) :=
α(G)

n(G)
.

Since a k-colouring of a graph is a partition of the vertex set into k independent sets, it follows that
the independence ratio of a graph is a lower bound on its chromatic number. For instance, the 4-
colour theorem thus implies that every planar graph has independent ratio at least 1

4
. Interestingly

enough, no one seems to know how to prove this last statement, sometimes called the “Erdős-Vizing
conjecture”, without using the 4-colour theorem — or a proof of a similar nature and length.

The independence ratio of a graph has often been studied in relation with the girth, which is the
length of a smallest cycle in the graph. A first result in this direction is the celebrated introduction
of the so-called “deletion method” in graph theory by Erdős, who used it to demonstrate the
existence of graphs with arbitrarily large girth and chromatic number. The latter is actually
established by proving that the independence ratio of the graph is arbitrarily small. As a large
girth is not strong enough a requirement to imply a constant upper bound on the chromatic
number, a way to pursue this line of research is to express the upper bound in terms of the
maximum degree ∆(G) of the graph G considered. This also applies to the independence ratio.
As seen in the introduction of this thesis, the Hall ratio of a graph G is a hereditary version of the
inverse of its independence ratio;

ρ(G) := max
H⊆G

n(H)

α(H)
.

Letting girth(G) stand for the girth of the graph G, that is, the length of a shortest cycle in G if G
is not a forest and +∞ otherwise, we define ρ(d, g) to be the supremum of the Hall ratios among
all graphs of maximum degree at most d and girth at least g. We also denote ρ(d,∞) the limit as
g →∞ of ρ(d, g) — note by definition that, for fixed d, ρ(d, g) is a non-increasing function of g.

ρ(d, g) := sup

{
n(G)

α(G)

∣∣∣∣ G graph with ∆(G) ≤ d and girth(G) ≥ g

}
,

ρ(d,∞) := lim
g→∞

ρ(d, g).

In 1979, Staton [113] established that ρ(d, 4) ≤ 5d−1
5

, in particular implying that ρ(3, 4) ≤ 14
5

.
The two graphs depicted in Figure 1.1.1, called the graphs of Fajtlowicz and of Locke, have fourteen
vertices each, girth 5, and no independent set of order 6. It follows that ρ(3, 4) = 14

5
= ρ(3, 5).

It is known that the graphs of Fajtlowicz and of Locke are the only two cubic triangle-free and
connected graphs with Hall ratio 14

5
. This follows from a result of Fraughnaugh and Locke [53] for
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Figure 1.1.1: The two cubic triangle-free connected graphs with Hall ratio 14
5

.

Figure 1.1.2: The only known 4-regular triangle-free connected graph of Hall ratio 13
4

graphs with more than 14 vertices completed by an exhaustive computer check on graphs with at
most 14 vertices performed by Bajnok and Brinkmann [11].

In 1983, Jones [66] reached the next step by establishing that ρ(4, 4) = 13
4

. Only one connected
graph is known to attain this value: it has 13 vertices and is represented in Figure 1.1.2. The value
of ρ(d, 4) when d ≥ 5 is still unknown; the best general upper bound is due to Shearer [110]. He
also provides an upper bound for ρ(d, 6) as a consequence of a stronger result on graphs with no
cycle of length 3 or 5.

Theorem 1.1.6 (Shearer, 1991 [110]). For every non-negative integer d, set

f(d) :=

{
1 if d = 0,
1+(d2−d)f(d−1)

d2+1
if d ≥ 1.

If G is a triangle-free graph on n vertices with degree sequence d1, . . . , dn, then

α(G) ≥
n∑
i=1

f(di).

Theorem 1.1.7 (Shearer, 1991 [110]). For every non-negative integer d, set

f(d) :=


0 if d = 0,
4
7

if d = 1,
1+(d2−d)f(d−1)

d2+1
if d ≥ 2.
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If G is a {C3, C5}-free graph on n vertices with degree sequence d1, . . . , dn, then

α(G) ≥
n∑
i=1

f(di)−
n11

7
,

where n11 is the number of pairs of adjacent vertices of degree 1 in G.

Theorems 1.1.6 and 1.1.7 allow us to compute upper bounds on ρ(d, 4) and on ρ(d, 6) for small
values of d, as indicated in Table 1.1. When d ≥ 5, these bounds are the best known ones.

d upper bound of ρ(d, 4) upper bound on ρ(d, 6)

2 5
2

= 2.5 7
3
≈ 2.33333

3 50
17
≈ 2.94118 14

5
= 2.8

4 425
127

≈ 3.34646 119
37
≈ 3.21622

5 2210
593

≈ 3.72681 3094
859

≈ 3.60186

6 8177
2000

≈ 4.0885 57239
14432

≈ 3.96612

7 408850
92177

≈ 4.43549 408850
94769

≈ 4.31417

8 13287625
2785381

≈ 4.77049 13287625
2857957

≈ 4.64934

9 1089585250
213835057

≈ 5.09545 1089585250
219060529

≈ 4.9739

10 11004811025
2033474038

≈ 5.41183 11004811025
2080503286

≈ 5.28949

Table 1.1: Upper bounds on ρ(d, 4) and ρ(d, 6) for d ≤ 10 yielded by Theorems 1.1.6 and 1.1.7.

We are not aware of any non trivial lower bounds on ρ(5, 4) and ρ(6, 4). Figures 1.1.3 and Fig-
ure 1.1.4 show graphs illustrating that ρ(5, 4) ≥ 10

3
≈ 3.33333 and ρ(6, 4) ≥ 29

8
= 3.625.

Figure 1.1.3: A 5-regular triangle-free (vertex-transitive) graph with Hall ratio 10
3

. Its vertex set is
[20], and its edge set is {ij | (i− j) mod 20 ∈ {1, 6, 10}}. There is no independent set of order 7,
and the white vertices form an independent set of order 6.
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Figure 1.1.4: A 6-regular triangle-free (vertex-transitive) graph with Hall ratio 29
8

. Its vertex set is
[29], and its edge set is {ij | (i− j) mod 29 ∈ {1, 5, 13}}. There is no independent set of order 9,
and the white vertices form an independent set of order 8.

The value of ρ(3, g) has also been studied when g goes to infinity. Kardoš, Král’ and Volec [73]
proved the existence of an integer g0 such that ρ(3, g0) ≤ 2.2978. More strongly, their upper bound
holds for the fractional chromatic number of every (sub)cubic graph of girth at least g0. In the
other direction, Bollobás [18] proved a general lower bound on ρ(d, g).

Theorem 1.1.8 (Bollobás, 1981 [18]). Let d ≥ 3. Let α be a real number in (0, 1) such that

α(d ln 2− ln(α)) + (2− α)(d− 1) ln(2− α) + (α− 1)d ln(1− α) < 2(d− 1) ln 2.

For every g ≥ 3, there exists a d-regular graph with girth at least g and Hall ratio more than 2/α.

Theorem 1.1.8 allows us to compute lower bounds on ρ(d,∞) for any value of d, the smaller ones
being represented in Table 1.2. All these values can be generalised into a looser but asymptotically
equivalent general lower bound of d/(2 ln d) [18, Corollary 3].

d lower bound on ρ(d,∞)

2 2
3 2.17835
4 2.3775
5 2.57278
6 2.76222
7 2.94606
8 3.1249
9 3.29931
10 3.46981
d d/(2 ln d)

Table 1.2: Lower bounds on ρ(d,∞) implied by Theorem 1.1.8.



84CHAPTER 1. INDEPENDENT SETS AND LOCAL COLOURINGS OF SPARSE GRAPHS

Our contribution is to provide improved upper bounds on the Hall ratio of graphs of maximum
degree in {3, 4, 5} and girth in {6, . . . , 12}. In particular, these are upper bounds on the fractional
chromatic number of vertex-transitive graphs in these classes. These upper bounds are obtained
via a systematic computer-assisted method.

d
g

6 7 8 9 10 11 12

3 30/11 ≈ 2.727272 30/11 2.625224 2.604167 2.557176 2.539132 2.510378
4 41/13 ≈ 3.153846 41/13 3.038497 3.017382 3
5 69/19 ≈ 3.631579 3.6 3.5

Table 1.3: Upper bounds on ρ(d, g) for d ∈ {3, 4, 5} and g ∈ {6, . . . , 12}.

Theorem 1.1.9. The values presented in Table 1.3 are upper bounds on ρ(d, g) for d ∈ {3, 4, 5}
and g ∈ {6, . . . , 12}.

The bounds provided by Theorem 1.1.9 when d ∈ {3, 4} and g = 7 are the same as those
for g = 6. It seems that this could be a general phenomenon. A computation is currently running
to determine an upper bound on ρ(3, 13), which we expect to be 2.5. We therefore propose the
following conjecture.

Conjecture 1.1.1. The values presented in Table 1.4 are upper bounds on ρ(d, g) for d ∈ {3, 4, 5}
and g ∈ {6, 8, 10, 12}.

d
g

6 8 10 12

3 2.604167 2.539132 2.5
4 3.017382 3
5 3.6 3.5

Table 1.4: Conjectured upper bounds on ρ(d, g) for d ∈ {3, 4, 5} and g ∈ {6, . . . , 12}.

1.1.3 Loosening of the sparsity

By a deletion argument, Ajtai, Komlós and Szemerédi [3] noted a more general statement as
corollary to their seminal bound on the independence number of triangle-free graphs. There is
some C > 0 and some ∆0 such that, for every graph G containing at most Tn(G) triangles, and of

maximum degree ∆ ≥ ∆0

√
T , the Hall ratio is at most C ·∆/ ln

(
∆/
√
T
)

. In other words, an upper

bound on the number of triangles in the graph yields a corresponding lower bound on independence
number. Somewhat later, Alon, Krivelevich and Sudakov [7] proved a stronger version of this in
terms of an upper bound on the chromatic number. Recently, using a sophisticated “stochastic local
search” framework, Achlioptas, Iliopoulos and Sinclair [1] tightened the result of [7], corresponding
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to a constant C above of around 1/4 in general1. In fact, shortly after the work in [3], using a
sharper bootstrapping from the triangle-free case, Shearer [108] had improved the above statement
on the independence number as follows.

Theorem 1.1.10 (Shearer [108]). Given a rational T > 0, for every graph G of average degree
d ≥ e7/4

√
T where each vertex is contained in an average of T triangles (so G contains a total of

n(G)T/3 triangles), it holds that

n(G)

α(G)
≤


d

ln d√
T
− 1

2

(
ln
(

ln d√
T
− 1
)

+ ln 4
3

+ 3
) if T ≥ 7

4
(

ln d√
T
− 1
) ,

d(
1− 2

3
T
)
(ln d− 1)

otherwise.

So as a general upper bound,
n(G)

α(G)
≤
(

1 + o(1)
d→∞

)
d

ln
d√
T

.

The case T = o(d) includes the triangle-free case and yields the best-to-date asymptotic lower
bound on the off-diagonal Ramsey numbers. The asymptotic factor 1 cannot be improved below
1/2, due to random regular graphs; see Section 1.6.3 for more details on sharpness.

Our main contribution is to give two stronger forms of Theorem 1.1.10, one on occupancy
fraction, that is the expectancy of the size of a random independent set (see Theorem 1.6.1 below),
the other on fractional chromatic number. We show how either easily implies Theorem 1.1.10 in
Section 1.6.

Theorem 1.1.11. Given ε, T > 0, there exists ∆ε such that, for every graph G of maximum degree
∆ ≥ ∆ε

√
T where each vertex is contained in at most T > 0 triangles,

(i) the average size of the independent sets of G is at least

(1− ε)
n(G) ln ∆√

T

∆
, and

(ii) there exists a fractional colouring w of G such that, for every vertex v ∈ V (G) of degree at
least ∆ε

√
T ,

w(v) ⊆

[
0, (1 + ε)

deg(v)

ln deg(v)√
T

]
,

and so in particular

χf (G) ≤ (1 + ε)
∆

ln ∆√
T

.

We prove Theorem 1.1.11 by an analysis of the hard-core model. In Section 1.6.3, we give some
indication that our application of this analysis is essentially tight.

Theorem 1.1.11(ii) and the results in [1] hint at their common strengthening.

1They also obtained an asymptotic estimate of 1/(2 + ε) for small T , namely
√
T ≤ ∆ε/ ln ∆.
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Conjecture 1.1.2. Given ε, T > 0, there exists ∆ε such that, for every graph G of maximum
degree ∆ ≥ ∆ε

√
T where each vertex is contained in at most T triangles,

χ`(G) ≤ (1 + ε)
∆

ln ∆√
T

.

1.1.4 Preliminaries and structure of the chapter

In Section 1.2, we prove the result on local list colourings of triangle-free graphs. We do so
by first reviewing the definition of correspondence colouring and proving for it a local version
of the “finishing blow” (Lemma 1.2.1) used by Bernshteyn in his proof of Molloy’s theorem for
correspondence colouring [13]. Next, we sketch how Bernshteyn’s argument can then be adapted
to prove Theorem 1.1.2, and we present a simple construction (Proposition 1.2.5) to show that
even some bipartite graphs cannot satisfy the conclusions of Theorem 1.1.2 without a suitable
lower bound on the minimum list size.

In Section 1.3, we present tools which take advantage of the local occupancy of a given prob-
ability distribution on the independent sets in order to derive results concerning local colourings
and the size of the independent sets. Among these tools is a greedy fractional colouring algorithm,
which we use in order to give various bounds on the local fractional colourings of sparse graphs
in Section 1.4. We prove a fractional local version of Reed’s bound using the uniform distribution
on maximum independent sets, a fractional local version of Molloy’s theorem using the hard-core
distribution on all independent sets, and a fractional local bound for graphs of girth 7 (which beats
Molloy’s for small degree vertices, but is worse in asymptotics) using the hard-core distribution on
maximal independent sets.

In Section 1.5, we improve on the known bounds for the independence ratio of d-regular graphs
of some prescribed (not too large) girth, for d ∈ {3, 4, 5}.

Finally, in Section 1.6, we generalise all our results on triangle-free graphs to graphs with a
bounded number of triangles containing each vertex. We give a sharp bound for the average size
of the independent sets in such graphs, and a bound sharp up to a multiplicative constant 4 for
the fractional chromatic number of such graphs, in a local setting.

Notation. Given a graph G, if v is a vertex of G and r a non-negative integer, then N r
G(v) is

the set of all vertices of G at distance exactly r from v in G, while N r
G[v] :=

⋃r
j=0N

j
G(v). Note in

particular that N0
G(v) = {v}. We write I(G) for the set of independent sets (including the empty

set) of G. We write Imax(G) and Iα(G) for the restriction to maximal and maximum independent
sets of G, respectively. If I in an independent set of G, a vertex v is covered by I if v belongs to I
or has a neighbour in I. A vertex that is not covered by I is uncovered (by I). If w is a mapping
from I(G) to measurable subsets of R then for every vertex v ∈ V (G) we set

w(v) :=
⋃

I∈I(G)
v∈I

w(I),

and w(X) :=
⋃
v∈X w(v) for every subset of vertices X ⊆ V (G). We write ŵ(x) := µ(w(x))

for the Lebesgue measure of w(x), for every x in the domain of w. By extension, ŵ(G) denotes
ŵ(V (G)) =

∑
I∈I(G)

µ(w(I)), the total weight of w on the graph G.

Given λ > 0, the hard-core distribution on G at fugacity λ is a probability distribution on
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I(G), where each I ∈ I(G) occurs with probability proportional to λ|I|. Writing I for the random
independent set drawn according to this probability distribution, we have

P [I = I] =
λ|I|

ZG(λ)
,

where the normalising term in the denominator is the partition function (or independence poly-
nomial) ZG(λ) =

∑
I∈I(G) λ

|I|. The occupancy fraction is E [|I| /n(G)]. Note that this is a lower
bound on the independence ratio of G.

The function W : [−1/e,∞)→ [−1,∞) is the inverse of z 7→ zez, also known as the Lambert W -
function. It is monotonic and satisfies W (x) = lnx−ln lnx+o(1) and W ((1+o(1))x) = W (x)+o(1)
as x→∞, and eW (y) = y/W (y) for all y.

1.2 Local list colouring

1.2.1 The finishing blow for DP-colouring

Just as in [13], we will establish Theorem 1.1.2 for a generalised form of list colouring called
correspondence colouring (or DP-colouring). We here state the definition given in [13].

Definition 1.2.1. Given a graph G, a cover of G is a pair H = (L,H), consisting of a graph H
and a function L : V (G)→ 2V (H), satisfying the following requirements:

1. the sets {L(u) : u ∈ V (G)} form a partition of V (H);

2. for every u ∈ V (G), the graph H[L(u)] is complete;

3. if EH(L(u), L(v)) 6= ∅, then either u = v or uv ∈ E(G);

4. if uv ∈ E(G), then EH(L(u), L(v)) is a matching (possibly empty).

An H -colouring of G is an independent set in H of size n(G).

A reader who prefers not to concern herself with this generalised notion may merely read L as
an ordinary list assignment and V (H) as the disjoint union of all lists. For usual list colouring,
there is an edge in H between equal colours of two lists if and only if there is an edge between
their corresponding vertices in G.

To state and prove our local version of the finishing blow, we will need some further notation.
Define H∗ to be the spanning subgraph of H such that an edge c1c2 ∈ E(H) belongs to E(H∗) if
and only if c1 and c2 are in different parts of the partition {L(u) : u ∈ V (G)}. We write deg∗H (c)
instead of degH∗(c).

Lemma 1.2.1. Let H = (L,H) be a cover of a graph G. Suppose there is a function ` : V (G)→
N≥4, such that, for all u ∈ V (G), |L(u)| ≥ `(u) and deg∗H (c) ≤ 1

6
min

v∈NG(u)
`(v) for all c ∈ L(u).

Then G is H -colourable.

For clarity, we separately state the corollary this lemma has for conventional list colouring.



88CHAPTER 1. INDEPENDENT SETS AND LOCAL COLOURINGS OF SPARSE GRAPHS

Corollary 1.2.1.1. Let L : V (G) → 2N be a list assignment of a graph G. Suppose there is a
function ` : V (G)→ N≥4 such that, for all u ∈ V (G), |L(u)| ≥ `(u) and the number of neighbours
v ∈ NG(u) for which c ∈ L(v) is at most 1

6
min

v∈NG(u)
`(v) for all c ∈ L(u). Then there exists a proper

L-colouring of G.

Proof of Lemma 1.2.1. Remove, if needed, some vertices from H to ensure that |L(u)| = `(u)
for all u ∈ V (G). Let I be a random subset of V (H) obtained by choosing, independently and
uniformly, one vertex from each list L(u). For c1c2 ∈ E(H∗), let Bc1c2 denote the event that both
c1 and c2 are chosen in I. So, if none of the events Bc1c2 occurs, then I is an independent set and
hence an H -colouring. Let ui be the vertex of G such that ci ∈ L(ui), for i ∈ {1, 2}. By definition,
P [Bc1c2 ] = 1

`(u1)`(u2)
. Define

Γ(c1c2) := {c′1c′2 ∈ E(H∗) | c′1 ∈ L(u1) or c′2 ∈ L(u2)} .

Note that Bc1c2 is mutually independent of the events Bc′1c
′
2

with c′1c
′
2 /∈ Γ(c1c2). All that remains

is to define weights xc1c2 ∈ [0, 1) to satisfy the hypothesis of the General Lovász Local Lemma.
Specifically, we need that

1

`(u1)`(u2)
= P [Bc1c2 ] ≤ xc1c2

∏
c′1c
′
2∈Γ(c1c2)

(
1− xc′1c′2

)
.

Since exp(−1.1x) ≤ 1− x if 0 ≤ x ≤ 0.17, it suffices to find weights xc1c2 ∈ [0, 0.17] satisfying

1

`(u1)`(u2)
≤ xc1c2 exp

−1.1
∑

c′1c
′
2∈Γ(c1c2)

xc′1c′2

 . (1.1)

If we choose weights of the form xc1c2 =
k

`(u1)`(u2)
for some constant k > 0, then (1.1) becomes

ln k ≥ 1.1k
∑

c′1c
′
2∈Γ(c1c2)

1

`(u′1)`(u′2)

(where u′i is such that c′i ∈ L(u′i), for i ∈ {1, 2}).

Now note that∑
c′1c
′
2∈Γ(c1c2)

1

`(u′1)`(u′2)
≤

∑
c′1∈L(u1)

deg∗H (c′1)

`(u1) min
v∈NG(u1)

`(v)
+

∑
c′2∈L(u2)

deg∗H (c′2)

`(u2) min
v∈NG(u2)

`(v)
≤ 1

3
,

by the assumption on deg∗H . So (1.1) is fulfilled if there is k > 0 such that

ln k ≥ 1.1k

3
and

k

`(u1)`(u2)
≤ 0.17 for all u1, u2 ∈ V (G).

Noting the lower bound condition on `, the choice k = e works.
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1.2.2 The proof of the list colouring theorem

In this section, we prove Theorem 1.1.2. Let us remark that an alternative to the following
derivation would be to similarly follow Molloy’s original proof and apply Corollary 1.2.1.1. We
will sketch a proof of the following stronger form of Theorem 1.1.2.

Theorem 1.2.2. Fix ε ∈ (0, 1). There exists some ∆ε such that, for every graph G of maximum
degree ∆ ≥ ∆ε and minimum degree at least δ := (72 ln ∆)2/ε, and for every cover H = (L,H) of
G satisfying

|L(u)| ≥ (1 + ε) max

{
deg(u)

ln deg(u)
,
δ

ln δ

}
,

it holds that G is H -colourable.

We will need further notation. Given a cover H = (L,H), the domain of an independent set
I in H is dom(I) = {u ∈ V (G) : I ∩ L(u) 6= ∅}. Let GI = G − dom(I) and let HI = (LI , HI)
denote the cover of GI defined by

HI = H −NH [I] and LI(u) = L(u) \NH(I) for all u ∈ V (GI).

Note that, if I ′ is an HI-colouring of GI , then I ∪ I ′ is an H -colouring of G.

For the rest of this section, fix some reals ε, ∆, δ, G, and H to satisfy the conditions of
Theorem 1.2.2. Write

k(u) = (1 + ε) max

{
degG(u)

ln degG(u)
,
δ

ln δ

}
,

so that |L(u)| ≥ k(u), and set `(u) = max{degG(u)ε/2, δε/2} so that `(u) ≥ 72 ln ∆ for all u.

With this notation, and in view of Lemma 1.2.1, it suffices to establish the following analogue
of Lemma 3.5 in [13].

Lemma 1.2.3. The graph H contains an independent set I such that

(i) |LI(u)| ≥ `(u) for all u ∈ V (GI), and

(ii) deg∗HI
(x) ≤ `(u)/6 ≤ 12 ln ∆ for all x ∈ V (HI).

Through an application of a lopsided version of the LLL, Lemma 1.2.3 reduces to the following
result. The proof of this reduction appears in [13] with a fixed value of ` instead of a varying
function; yet the proof is still valid within this local setting.

Lemma 1.2.4. Fix a vertex u ∈ V (G) and an independent set J ⊆ L(NG[u]). Let I′ be a uniformly
random independent subset of LJ(NG(u)) and let I = J ∪ I′. Then

(i) P [|LI(u)| < `(u)] ≤ ∆−3/8, and

(ii) P
[
∃c ∈ LI(u), deg∗HI

(c) > 12 ln ∆
]
≤ ∆−3/8.

Proof. This proof is adapted from the proof of Lemma 3.6 in [13].

Since G is triangle-free, it holds that I′ ∩ LJ(v) contains an element from LJ(v) ∪ {•} selected
uniformly at random, where I′ ∩ LJ(v) is empty whenever • is selected.
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Given a vertex u ∈ V (G), for every x ∈ L(u) we denote Ñ(x) the set of neighbours v of u in G
such that x ∈ L(v). Then

P [x ∈ LI(u)] = P [I′ ∩NH(x) = ∅] =
∏

v∈Ñ(x)

(
1− 1

|LJ(v)|+ 1

)
,

and hence

exp

− ∑
v∈Ñ(x)

1

|LJ(v)|

 ≤ P [x ∈ LI(u)] ≤ exp

− ∑
v∈Ñ(x)

1

1 + |LJ(v)|

 .

(i) We notice that ∑
x∈L(u)

∑
v∈Ñ(x)

1

|LJ(v)|
≤

∑
v∈NG(u)
LJ (v)6=∅

∑
y∈LJ (v)

1

|LJ(v)|
≤ degG(u).

By using the convexity of the exponential function, we obtain that

E [|LI(u)|] =
∑
x∈L(u)

P [x ∈ LI(u)]

≥
∑
x∈L(u)

exp

− ∑
v∈Ñ(x)

1

|LJ(v)|


≥ k(u) exp

(
−degG(u)

k(u)

)
= (1 + ε) max

{
degG(u)1− 1

1+ε

ln degG(u)
,
δ1− 1

1+ε

ln δ

}
> 2 max

{
degG(u)

ε
2 , δ

ε
2

}
= 2`(u),

where the final inequality holds for ∆ (and hence δ) large enough in terms of ε, because by
convexity 1− 1/(1 + ε) > ε/2 for 0 < ε < 1. We now apply a Chernoff bound for negatively
correlated random variables, which yields that

P [|LI(u)| < `(u)] ≤ e−`(u)/4 ≤ ∆−18,

which is at most ∆−3/8 for ∆ ≥ 2.

(ii) For every x ∈ L(u) we define

px := P
[
x ∈ LI(u) and deg∗HI

(x) > 12 ln ∆
]
.

By a union bound, P
[
∃x ∈ LI(u), deg∗HI

(x) > 12 ln ∆
]
≤

∑
x∈L(u)

px, and since |L(u)| ≤ deg(u)
8

assuming that ∆ is large enough, it suffices to prove that px ≤ ∆−4 for every x ∈ L(u) in
order to obtain the desired bound.
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Since px ≤ P [x ∈ LI(u)], we may assume that

exp

− ∑
v∈Ñ(x)

1

1 + |LJ(v)|

 ≥ P [x ∈ LI(u)] ≥ ∆−4,

hence

E
[
deg∗HI

(x)
]

=
∑

v∈Ñ(x)

P [I′ ∩ LJ(v) = ∅] =
∑

v∈Ñ(x)

1

1 + |LJ(v)|
≤ 4 ln ∆.

There remains to apply a Chernoff bound in order to obtain

px ≤ P
[
deg∗HI

(x) > 12 ln ∆
]

≤ P
[
deg∗HI

(x) > 3E
[
deg∗HI(c)

]]
≤ ∆−4,

as required.

1.2.3 A construction to prove the need for a minimum degree condition

In Theorem 1.1.2 the condition is only truly local when the graph is of minimum degree δ =
(72 ln ∆)2/ε, which grows with the maximum degree ∆. The result is made strictly stronger by
reducing δ. In this section we show that even for bipartite graphs the conclusion of Theorem 1.1.2
requires some ω(1) bound on δ as ∆ → ∞. We state and prove the result specifically with
deg(u)/ ln deg(u) as the target local list size per vertex u. The reader can check that any sublinear
and superlogarithmic function will do, but with a different tower of exponentials.

Proposition 1.2.5. For any δ ≥ 3, there is a bipartite graph of minimum degree δ and maximum
degree expδ−1(δ) (so a tower of exponentials of height δ − 1) that is not L-colourable for some list
assignment L : V (G)→ 2N satisfying

|L(u)| ≥ deg(u)

ln deg(u)

for all u ∈ V (G).

Proof. The construction is a recursion, iterated δ − 1 times.
For the basis of the recursion, let G0 be the star K1,δ of degree δ ≥ 3. We write A0 as the

set containing the centre v0 of the star and B0 as the set of all non-central vertices. Note that,
with the assignment L0 that assigns the list {10, . . . , δ0} to the centre and lists {i0}, i ∈ [δ], to the
non-central vertices, G0 is not L0-colourable.

We recursively establish the following properties for Gi, Ai, Bi, Li, where 0 ≤ i ≤ δ − 1:

1. Gi is bipartite with partite sets Ai and Bi;

2. Ai has all vertices of degree at least δ and at most expi(δ), with some vertex vi attaining the
maximum expi(δ);
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3. Bi has expi(δ) vertices of degree i+ 1;

4. |Li(a)| ≥ deg(a)/ ln deg(a) for all a ∈ Ai and |Li(b)| ≥ deg(b) for all b ∈ Bi;

5. Gi is not Li-colourable.

These properties are clearly satisfied for i = 0.
From step i to step i+ 1, we form Gi+1 by taking exp(expi(δ))/ expi(δ) copies of Gi and adding

a vertex vi+1 universal to all of the Bi-vertices. Let Ai+1 be vi+1 together with all Ai-vertices, and
Bi+1 be all of the Bi-vertices. Label each copy of Gi with j from 1 to exp(expi(δ))/ expi(δ). We
set Li+1(a) = Li(a) for every a ∈ Ai, Li+1(vi+1) = {1i+1, . . . , exp(expi(δ))/ expi(δ)i+1} and add
colour ji+1 to Li(b) to form Li+1(b) for every Bi-vertex b in the j-th copy of Gi. It is routine to
check then that Gi+1, Ai+1, Bi+1, Li+1 satisfy the promised properties.

The proposition follows by taking Gδ−1.

As a final remark on minimum degree or minimum list size conditions, we note that our proof
of Theorem 1.1.2 can be adapted to reduce δ = (72 ln ∆)2/ε as a function of ∆ by increasing the
leading constant ‘1’ in the list size condition. Indeed, this removes the dependence on ε and brings
the result much closer to the triangle-free case of the significantly more general local colouring
result of Bonamy et al. [19], which has a minimum degree condition of (ln ∆)2. Here, as we focus
on triangle-free graphs we prefer to aim for the best possible constant at the expense of the cutoff
value δ.

1.3 Using probability distributions on the independent sets

In this section we present some lemmas needed for the proofs of the main theorems on fractional
colourings and independence ratio. All of these rely on a given probability distribution on the
independent sets.

1.3.1 Greedy fractional colouring algorithm

Our results on fractional colouring use a greedy algorithm. This algorithm is a generalisation of an
algorithm first described in the book of Molloy and Reed [93, p. 245] for the uniform distribution
over maximum independent sets. It relies on a given probability distribution over the independent
sets of any induced subgraph of the input graph that we wish to fractionally colour.

Lemma 1.3.1. Fix a positive integer r. Let G be a graph and suppose that every vertex v ∈ V (G)
is assigned a list (αj(v))rj=0 of r+1 real numbers. Suppose that for each induced subgraphs H of G,
there is a probability distribution on I(H) such that, writing IH for the random independent set
from this distribution,

∀v ∈ V (H),
r∑
j=0

αj(v)E
[∣∣N j

H(v) ∩ IH
∣∣] ≥ 1.

The greedy fractional algorithm defined by Algorithm 3 produces a fractional colouring w of G such
that w(v) ⊆ [0, γα(v)] for every vertex v ∈ V (G), where

γα(v) :=
r∑
j=0

αj(v)
∣∣N j

G(v)
∣∣ .
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In particular,
χf (G) ≤ max

v∈V (G)
γα(v).

Algorithm 3 The greedy fractional algorithm

for I ∈ I(G) do
ŵ(I)← 0

end for
H ← G
while |V (H)| > 0 do

τ ← min

{
min

v∈V (H)

1− ŵ(v)

P [v ∈ IH ]
, min
v∈V (H)

γα(v)− ŵ(G)

}
for I ∈ I(H) do
ŵ(I)← ŵ(I) + P [IH = I] τ

end for
H ← H − {v ∈ V (H) | ŵ(v) = 1}

end while

Proof. We present a refinement of an algorithm given in the book of Molloy and Reed [93], and
show that under the assumptions of the lemma, it returns the desired fractional colouring. The
idea of the algorithm is to greedily add weight to independent sets according to the probability
distribution induced on all not yet fully coloured vertices.

We build a fractional colouring w in several iterations, and we write ŵ(I) for µ(w(I)) so that
ŵ(I) is a non-negative rational representing the measure w assigns to I. Through the iterations,
w is a partial fractional colouring in the sense of not yet having satisfied the condition that the
measure ŵ(v) induced on each vertex v ∈ V (G) is at least 1.

We next show that this algorithm certifies the desired fractional colouring. For the analysis, it
is convenient to index the iterations: let Hi, ŵi(I), ŵi(v), ŵi(G), τi denote the corresponding H,
ŵ(I), ŵ(v), ŵ(G), τ in the i-th iteration of the while loop, prior to updating the sequence. Note
then that H0 ⊇ H1 ⊇ H2 ⊇ · · · . We also have ŵi+1(v) =

∑i
k=0 P [v ∈ IHk ] τk for any v ∈ V (Hi)

and ŵi+1(G) =
∑i

k=0 τk.
Let us first describe the precise fractional colouring (rather than its sequence of measures) that

is constructed during the algorithm. During the update from ŵi to ŵi+1, in actuality we do the
following. Divide the interval [ŵi(G), ŵi(G) + τi) into a sequence (BI)I∈I(G) of consecutive right
half-open intervals such that BI has length P [IHi = I] τi. We then let wi+1(I) = wi(I) ∪ BI for
each I ∈ I(G). Note that µ(wi(I)) = ŵi(I) for all I ∈ I(G) and i. Moreover, by induction,
wi(G) ⊆ [0, ŵi(G)) for all i.

By the choice of τi, if there is some v ∈ V (Hi) (i.e. with ŵi(v) < 1), then ŵi+1(G) ≤ γα(v)
and so wi+1(G) ⊆ [0, γα(v)]. So we only need to show that the algorithm terminates. To do so, it
suffices to show that |V (Hi+1)| < |V (Hi)| for all i.

If

τi = min
v∈V (Hi)

1− ŵi(v)

P [v ∈ IHi ]
,

then there must be some vertex v ∈ V (Hi) such that ŵi(v) < 1 and ŵi+1(v) = 1, so |V (Hi+1)| <
|V (Hi)| and we are done. We may therefore assume that there is some vertex v ∈ V (Hi) such that
τi = γα(v)− ŵi(G), and so ŵi+1(G) = γα(v).
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For any k ∈ [i+ 1], we know that

r∑
j=0

αj(v)E
[∣∣N j

Hk
(v) ∩ IHk

∣∣] ≥ 1,

and so
r∑
j=0

αj(v)
∑

u∈Nj
Hk

(v)

P [u ∈ IHk ] τk ≥ τk.

By summing this last inequality over all such k, we obtain

r∑
j=0

αj(v)
∣∣N j

G(v)
∣∣ ≥ r∑

j=0

αj(v)
∑

u∈Nj
G(v)

ŵi+1(u) ≥ ŵi+1(G) = γα(v).

We then have that

α0(v)ŵi+1(v) ≥ γα(v)−
r∑
j=1

αj(v)
∣∣N j

G(v)
∣∣ = α0(v).

So ŵi+1(v) = 1, hence |V (Hi+1)| < |V (Hi)|.

1.3.2 Independence ratio

We state two lemmas which can be proved in similar ways. We only present the proof of the second
one, the argument for the first lemma being very close but a little simpler.

Lemma 1.3.2. Let r be a positive integer and G be a d-regular graph on n vertices. Assume that
there exists a probability distribution p on I(G) such that

∀v ∈ V (G),
r∑
i=0

αiE [Xi(v)] ≥ 1, (1.2)

where Xi(v) is the random variable counting the number of paths of length i between v and a vertex
belonging to a random independent set I chosen following p. Then

n

α(G)
≤ α0 +

r∑
i=1

αid(d− 1)i−1. (1.3)

Lemma 1.3.3. Let r be a positive integer and G be a d-regular graph on n vertices. Assume that
there exists a probability distribution p on I(G) such that

∀e ∈ E(G),
r∑
i=0

αiE [Xi(e)] ≥ 1, (1.4)

where Xi(e) is the random variable counting the number of paths of length i + 1 starting with e
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and ending at a vertex belonging to a random independent set I chosen following p. Then

n

α(G)
≤

r∑
i=0

2αi(d− 1)i. (1.5)

Proof. Given an edge e of G, the contribution of an arbitrary vertex v ∈ I to Xi(e) is the number
of paths of length i + 1 starting at v and ending with e. It follows that the total contribution of
any vertex v ∈ I to

∑
e∈E(G)

Xi(e) is the number of paths of G with length i+1 that start at v, which

is d(d− 1)i since G is a d-regular graph. Consequently,∑
e∈E(G)

Xi(e) =
∑

v∈V (G)

P [v ∈ I] d(d− 1)i.

We now sum (1.4) over all edges of G.

∑
e∈E(G)

r∑
i=0

αiE [Xi(e)] ≥ |E(G)| = nd

2

r∑
i=0

αi
∑

e∈E(G)

E [Xi(e)] ≥
nd

2

r∑
i=0

αi
∑

v∈V (G)

P [v ∈ I] d(d− 1)i ≥ nd

2

r∑
i=0

2αiE [|I|] (d− 1)i ≥ n

r∑
i=0

2αi(d− 1)i ≥ n

α(G)

We can proceed to a generalisation of Lemmas 1.3.2 and 1.3.3 to non-regular graphs through a
regularisation of the considered graph, and so by heredity of the class of graphs of fixed maximum
degree and girth this generalisation holds for the Hall ratio. This can be done by an application
of Lemma 0.3.6.

Lemma 1.3.4. Let d and g be integers greater than two. If there exists a constant B = B(d, g)
such that every d-regular graph H with girth g has independence ratio at least B, then every
graph G with maximum degree d and girth g also has independence ratio at least B. In particular,
if Lemma 1.3.2 or Lemma 1.3.3 can be applied to the class of d-regular graphs of girth g, then the
conclusion also holds for the class of graphs with maximum degree d and girth g, that is, for i(d, g).

Proof. Let G be a graph with maximum degree d and girth g on n vertices. Let ϕ(G) be the
graph provided by Lemma 0.3.6. In particular, n(ϕ(G)) = kn where k is the number of induced
copies of G partitioning V (ϕ(G)). By assumptions, ϕ(G) contains an independent set I of order
at least B · kn. Letting Ii be the set of vertices of the i-th copy of G contained in I, by the
pigeon-hole principle there exists i ∈ [k] such that |Ii| ≥ B · n, and hence G has independence
ratio at least B.
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1.4 Local fractional colourings

1.4.1 A local Reed bound

For the sake of illustration, we begin by showing how Lemma 1.3.1 can be used to prove Theo-
rem 1.1.4. We actually establish a local form of Theorem 1.1.4, which strengthens a result first
devised by McDiarmid (unpublished) and appearing as an exercise in Molloy and Reed’s book [93].

Theorem 1.4.1 (McDiarmid, unpublished). Let G be a graph, and let us denote ω(v) for the order
of a largest clique in G containing v, for every vertex v ∈ V (G). Then

χf (G) ≤ max
v∈V (G)

ω(v) + deg(v) + 1

2
.

A published version of Theorem 1.4.1 can be found in the thesis of Andrew King [80, Theo-
rem 2.10, p. 12]. The argument relies on the relation (1.6) below [80, Lemma 2.11], which is a
local version of the relation (21.10) appearing in Molloy and Reed’s book [93]. The short argu-
ment, however, stays the same and we provide it here only for explanatory purposes, since it is
the inspiration for the argument used in the proof of Theorem 1.1.5.

Theorem 1.4.2. Let G be a graph, and let us denote ω(v) for the order of a largest clique in G
containing v, for every vertex v ∈ V (G). Setting

γ(v) :=
ω(v) + deg(v) + 1

2
,

there exists a local fractional colouring w of G such that, for every vertex v ∈ V (G),

w(v) ⊆ [0, γ(v)].

Proof. We demonstrate the statement by applying Lemma 1.3.1. To this end, we use the uniform
distribution on maximum independent sets. Specifically, for every induced subgraph H of G we
let IH be a maximum independent set of H, drawn uniformly at random. Let v ∈ V (H) be any
vertex. We shall prove that

ω(v) + 1

2
P [v ∈ IH ] +

1

2
E [|N(v) ∩ IH |] ≥ 1. (1.6)

The conclusion then follows by applying Lemma 1.3.1, with r = 1, α0(v) = 1
2
·(ω(v)+1) and α1(v) =

1
2

for every vertex v ∈ V (G).

It remains to establish (1.6). We let Jv := IH \N [v], and we condition on the following random
events.

(i) Let Xk be the random event that W := N [v] \ N(Jv) is a clique of size k ≤ ω(v). It
follows that exactly one vertex from W belongs to IH , and every vertex in W has equal
probability 1/k to be in IH . It follows that

ω(v) + 1

2
P [v ∈ IH | Xk] +

1

2
E [|N(v) ∩ IH | | Xk] =

ω(v) + 1

2k
+
k − 1

2k
≥ 1.
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(ii) Let Y be the random event that W is not a clique. Note that Y is the complementary event
to the union of the events Xk. In this case, |(W \ {v}) ∩ IH | ≥ 2, and v /∈ IH , since IH is a
maximum independent set. It follows that

ω(v) + 1

2
P [v ∈ IH | Y ] +

1

2
E [|N(v) ∩ IH | | Y ] ≥ 1

2
× 2 = 1

The validity of (1.6) follows by summing over all possible sets J for which there exists a maximum
independent set I of H such that J = I \N [v].

We finish by noting that the bound provided by Theorem 1.4.1 is best possible over the class of
unicyclic triangle-free graphs if one uses the fractional greedy colouring of Lemma 1.3.1 together
with any probability distribution on the maximum independent sets of the graph.

Lemma 1.4.3. If the probability distribution used in Lemma 1.3.1 gives positive probability only to
maximum independent sets, then the greedy fractional colouring algorithm can return a fractional
colouring of weight up to d+3

2
in general for graphs of degree d, should they be acyclic when d is

odd, or have a unique cycle (of length 5) when d is even.

Proof. We prove the statement by induction on the positive integer d.

• If d = 1, then let G1 consist only of an edge. The algorithm returns a fractional colouring
of G1 of weight 2.

• If d = 2, then let G2 be the cycle of length 5. The algorithm returns a fractional colouring
of G2 of weight 5

2
.

• If d > 2, then let Gd be obtained from Gd−2 by adding two neighbours of degree 1 to every
vertex. This creates no new cycles, so Gd is acyclic when d is odd, and contains a unique
cycle, which is of length 5, when d is even.

For every d ≥ 3, the graph Gd contains a unique maximum independent set, namely I0 :=
V (Gd) \ V (Gd−2). After the first step of the algorithm applied to Gd, all the vertices in I0

have weight 1, and we are left with the graph Gd−2 where every vertex has weight 0. By the
induction hypothesis, the total weight of the fractional colouring returned by the algorithm
is therefore 1 + (d−2)+3

2
= d+3

2
.

1.4.2 Local fractional colourings of triangle-free graphs

Lemma 1.4.3 implies that if we are to prove a better bound than that given by Theorem 1.4.1,
we need to use a probability distribution that gives a non-zero probability to non-maximum inde-
pendent sets. Moreover, we need to be able to make a local analysis of the possible outcomes for
the random independent set, independently from its exterior shape. Only few probability distri-
butions have this property, which is referred to as the spatial Markov property . One of them is the
hard-core distribution, which we use together with Lemma 1.3.1 in order to prove Theorem 1.1.3
and Theorem 1.1.5.
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1.4.2.1 The hard-core model

Given a graph G, and a parameter λ > 0, the hard-core model on G at fugacity λ is a probability
distribution on the independent sets I(G) (including the empty set) of G, where each I ∈ I(G)
occurs with probability proportional to λ|I|. Writing I for the random independent set, we have

P [I = I] =
λ|I|

ZG(λ)
,

where the normalising term in the denominator is the partition function (or independence polyno-
mial) ZG(λ) =

∑
I∈I(G)

λ|I|.

Given a choice of I ∈ I(G), we say that a vertex u ∈ V (G) is uncovered if N(u) ∩ I = ∅,
and that u is occupied if u ∈ I. Note that u can be occupied only if it is uncovered. We note the
following useful facts (which appear verbatim in [33, 34]).

Fact 1 For every vertex v ∈ V (G),

P [v ∈ I | v uncovered] =
λ

1 + λ
.

Fact 2 If G is triangle-free, then for every vertex v ∈ V (G),

P [v uncovered | v has j uncovered neighbours] = (1 + λ)−j.

Fact 1 holds because, for each realisation J of I \ {v} such that J ∩ N(v) = ∅ (i.e. v is
uncovered), there are two possible realisations of I, namely J and J ∪ {v}. Now, I takes these
values with probabilities proportional to λ|J | and λ1+|J | respectively, so for such J we have

P [v ∈ I | I \ {v} = J ] =
λ1+|J |

λ|J | + λ1+|J | ,

and the fact follows.

Fact 2 holds because, for each realisation J of I \ N(v) such that |N(v) \N(J)| = j, every
possible subset of N(v) \N(J) (the uncovered neighbours of v) extends J into a valid realisation
of I. Only the empty set extends J into a realisation of I where v is uncovered, so we have

P [v uncovered | I \N(v) = J ] =
λ|J |∑

X⊆N(v)\N(J)

λ|X|+|J |
=(1 + λ)−j .

We apply these facts to give a lower bound on a linear combination of the probability that v
is occupied and the expected number of occupied neighbours of v. This is a slight modification of
the arguments of [33, 34], but here we focus on individual vertices, rather than averaging over a
uniformly random choice of vertex.

Lemma 1.4.4. Let G be a triangle-free graph and let (αv)v∈V (G) and (βv)v∈V (G) be sequences of
positive real numbers. Write I for a random independent set drawn from the hard-core model on
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G at fugacity λ > 0. Then for every v ∈ V (G), we have

αvP [v ∈ I] + βvE [|N(v) ∩ I|] ≥ βvλ (ln(αv/βv) + ln ln(1 + λ) + 1)

(1 + λ) ln(1 + λ)
.

Proof. Fix a vertex v ∈ V (G) and let Z be the number of uncovered neighbours of v given the
random independent set I. By Facts 1 and 2, and Jensen’s inequality we have

P [v ∈ I] =
λ

1 + λ
P [v uncovered] =

λ

1 + λ
E
[
(1 + λ)−Z

]
≥ λ

1 + λ
(1 + λ)−E[Z].

Similarly, each of the Z uncovered neighbours of v is occupied with probability λ/(1 +λ) indepen-
dently of the others (since G is triangle-free). Hence

E [|N(v) ∩ I|] =
λ

1 + λ
E [Z] .

Minimising over the value of E [Z] ∈ R, we have

αvP [v ∈ I] + βvE [|N(v) ∩ I|] ≥ λ

1 + λ

(
αv(1 + λ)−E[Z] + βvE [Z]

)
≥ λ

1 + λ
min
z∈R

{
αv(1 + λ)−z + βvz

}
.

When αv, λ > 0 this is a strictly convex function of z, with a minimum at

z =
ln(αv/βv) + ln ln(1 + λ)

ln(1 + λ)
,

from which the result follows.

1.4.2.2 Proof of the theorem

We are now ready to prove Theorem 1.1.3.

Proof of Theorem 1.1.3. The method is to combine Lemmas 1.3.1 and 1.4.4 by carefully choosing
(αv)v∈V (G) and (βv)v∈V (G). For every v ∈ V (G), we want to minimise αv + βv deg(v) subject to the
condition

βvλ (ln(αv/βv) + ln ln(1 + λ) + 1)

(1 + λ) ln(1 + λ)
= 1. (1.7)

For then the hypothesis of Lemma 1.3.1 (with α0(v) = αv and α1(v) = βv for all v ∈ V (G)) follows
from the conclusion of Lemma 1.4.4. Given the assumptions on G, we can apply Lemma 1.4.4 to
all induced subgraphs of G since they are also triangle-free, and the local parameters αv and βv
are invariant under taking induced subgraphs.
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Note that (1.7) is equivalent to

αv =
βv(1 + λ)

1+λ
βvλ

e ln(1 + λ)
,

so that αv + βv deg(v) is a convex function of βv with a minimum at

βv =
1 + λ

λ
· ln(1 + λ)

1 +W
(

deg(v) ln(1 + λ)
) ,

giving

αv + βv deg(v) =
1 + λ

λ
· eW (deg(v) ln(1+λ)).

For any fixed λ this is an increasing function of deg(v). We take λ = ε/2, and we are done by
Lemma 1.3.1 if we can show that there exists δ > 0 such that for all deg(v) ≥ δ we have

(2/ε+ 1) · eW (deg(v) ln(1+ε/2)) ≤ (1 + ε)
deg(v)

ln deg(v)
. (1.8)

Let us first assume that deg(v) is at least some large enough multiple of 1/ε so that

eW (deg(v) ln(1+ε/2)) ≤ (1 + ε/2) deg(v) ln(1 + ε/2)

ln(deg(v) ln(1 + ε/2))
,

where we used the fact that W (x) = lnx − ln lnx + o(1) as x → ∞. Then by (1.8), it suffices to
have

(2/ε+ 1)(1 + ε/2) ln(1 + ε/2) · ln deg(v) ≤ (1 + ε) ln(deg(v) ln(1 + ε/2)).

This last inequality holds for deg(v) large enough (as a function of ε) provided

(2/ε+ 1)(1 + ε/2) ln(1 + ε/2) < 1 + ε.

This is easily checked to hold true for small enough ε, namely ε ≤ 4.

1.4.3 A stronger bound for graphs of girth 7

In the proof of Theorem 1.1.3, we have used the hard-core distribution on the independent sets,
including the non maximal ones. Moreover, the fugacity which let us derive the proof was λ =
ε/2 < 1, which means that more weight was given to smaller independent sets in the obtained
fractional colouring. This is quite counter-intuitive, since one would expect to be able to colour a
graph more easily using larger independent sets, in particular only maximal ones.

By considering graphs of girth 7, we have been able to analyse the hard-core distribution
restricted to the maximal independent sets. This restriction yields a certain amount of technical-
ities, since the local analysis of the independent sets is no longer entirely independent from the
outside, because of the maximality condition. We now proceed with the analysis of the hard-core
distribution on the maximal independent sets in order to prove Theorem 1.1.5.

Proof of Theorem 1.1.5. For any induced graphH of a graphG, we let IH be a random independent
set of H, drawn from Imax(H) according to the hard-core distribution at fugacity λ > 0. This
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means that

∀I0 ∈ Imax(H), P [IH = I0] =
λ|I0|∑

I∈Imax(H)

λ|I|
.

From now on, letG be a graph of girth (at least) 7 andH an induced subgraph ofG. If v ∈ V (H)
then

JH,v :=
{
I \N2

H [v]
∣∣ I ∈ Imax(H)

}
.

Set Jv := IH \N2
H [v] ∈ JH,v, and Xi(v) := IH ∩N i

H(v). We establish the following claim.

Claim 1.4.5. Using the hard-core distribution on Imax(H) at fugacity λ = 4, it holds that for
every vertex v ∈ V (H), every set J0 ∈ JH,v and every integer k ≥ 4,

2k−3 + k

k
E [X0(v) | Jv = J0] +

2

k
E [X1(v) | Jv = J0] ≥ 1.

Proof. The subset IH \ Jv consists of an independent set of G contained in W0 := N2
H [v] \N(Jv).

It could hold that some vertices in W0 are forced to belong to this independent set, namely when
one of their neighbours in V (H) \W0 is not covered by Jv. Let Wf be the set of those vertices,
and W0 be obtained by removing those vertices and their neighbours;

Wf := {v ∈W0 | (N(v) \W0) * N(Jv)} ,
W := W0 \N [Wf ].

Note that the subgraph of H induced by W is a forest composed of trees of maximum degree d and
depth at most 2. In the rest of the proof, we may assume without loss of generality that H[W] is
connected, and therefore a tree of maximum degree at most d and depth at most 2, since adding
any disjoint component to H[W] would only increase the value of one or several of the Xi(v)’s.

Let J0 ∈ JH,v be any fixed realisation of Jv, and let us condition on the random event that
Jv = J0. Let W , Wf and W0 be the respective (deterministic) values of W, Wf and W0 in
this setting. It turns out that IH ∩W is an independent set drawn according to the hard-core
distribution at fugacity λ from Imax(H[W ]).

To see this, let I ∈ Imax(H) be any realisation of IH such that I \N2
H [v] = J0. Let IW := I∩W ,

we show that IW ∈ Imax(H[W ]). First, we show that Wf ⊆ I. Indeed, if u ∈ Wf , then u has at
least one neighbour u′ ∈ V (H) \W0 that is uncovered by J0. Because H is of girth 7, the vertex
u is the only neighbour of u′ in W0. The maximality of I implies that u′ must be covered by W0,
hence u ∈ I. Second, if there is a vertex u ∈ W that is uncovered by IW , then the maximality of I
implies that u must be covered by I \W , and hence either by J0 or by Wf . None is possible since
N(J0) and N(Wf ) are both disjoint from W by construction, so we have a contradiction.

On the other hand, given any set IW ∈ Imax(H[W ]), the set J0 ∪Wf ∪ IW is a valid realisation
of IH . Indeed, any vertex in W is covered by IW , and any vertex in V (H) \W is covered either
by J0 or by Wf , so J0 ∪Wf ∪ IW is a maximal independent set of H.

In conclusion, the set of realisations of IH∩W is exactly Imax(H[W ]), and each such realisation

IW has a probability proportional to λ|IW |+|Wf |+|J0|, and hence proportional to λ|IW | since J0 and
Wf are fixed. This finishes to establish that IH ∩W follows the hard-core distribution at fugacity
λ on Imax(H[W ]).

We let Wi be the set of vertices of W at distance i from v in W , for i ∈ {0, 1, 2}, and W1,j be
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the subset of vertices of W1 with j neighbours in W2. We set xj := |W1,j|. Thus

|W1| =
d−1∑
j=0

xj, and

|W2| =
d−1∑
j=1

jxj.

Note that W1 ∈ Imax(H[W ]) and that P [I ∩W = W1] is proportional to λ

d−1∑
j=0

xj
. In order to ease

the following computations and verifications, we compute a weight w(I) for each independent
set I ∈ Imax(H[W ]) that is proportional to P [I ∩W = I], such that w(W1) = 1.

There is exactly one maximal independent set I0 that contains v, namely I0 := {v} ∪W2, of

normalised weight w0 := λ
1+
∑
j≥0

(j−1)xj
. Every other maximal independent set I ∈ Imax(W )\{I0,W1}

contains W1,0. In addition, for every vertex u ∈ W1 \W1,0, the set I either contains u or it contains
all the neighbours of u in W2. Therefore, it follows that if x0 > 0, then the sum of the weights of
these other independent sets is

T :=
∑

i1≤x1,...,id−1≤xd−1

d−1∏
j=1

(
xj
ij

)(
λj−1

)ij =
d−1∏
j=1

(
1 + λj−1

)xj .
If x0 = 0, then the sum of their weights is T − w0

λ
, since there is no independent set containing W2

in whole and not v in this case.
We let D := T + w0 if x0 > 0, and D := T + w0

(
1− 1

λ

)
otherwise. It follows that

E [X0] =
w0

D
, and

E [X1] =
T

D

(
x0 +

d−1∑
j=1

xj
1 + λj−1

)
.

There remains to check that, up to a good choice of λ, it holds that

2k−3 + k

k
E [X0] +

2

k
E [X1] ≥ 1.

This translates to

2k−3w0 +
kw0

λ
≥ T

(
k − 2

d−1∑
j=1

xj
1 + λj−1

)
if x0 = 0, and to

2k−3w0 ≥ T

(
k − 2x0 − 2

d−1∑
j=1

xj
1 + λj−1

)
if x0 6= 0.

We use the two following facts.

Fact 1 For every positive integer j, the function λ 7→
(
1 + 1

λj−1

)1+λj−1

is non increasing on
(0,+∞), and in particular always bounded from above by 3125

1024
when λ ≥ 4 and j ≥ 2,



1.4. LOCAL FRACTIONAL COLOURINGS 103

and by
(
1 + 1

λj0−1

)1+λj0−1

when λ ≥ 1 and j ≥ j0.

Fact 2 For all real numbers y0, A and B with A > 1 and B ≥ 0, the maximum of the function
f : y 7→ Ay(B − 2y) on the domain [y0,+∞) is f(y0) when B/2 − 1/ lnA ≤ y0, and 2AB/2

e lnA

otherwise.

Let us discriminate on the possible values for x0, noting that w0 ≥ λ1−x0 . When x0 = 0, it suffices
to show that

2k−3λ+ k ≥
d−1∏
j=1

(
1 +

1

λj−1

)xj (
k − 2

d−1∑
j=1

xj
1 + λj−1

)
, (1.9)

and when 1 ≤ x0 ≤ k/2, that

2k−3λ1−x0 ≥
d−1∏
j=1

(
1 +

1

λj−1

)xj (
k − 2x0 − 2

d−1∑
j=1

xj
1 + λj−1

)
. (1.10)

Recall by definition that each value xj is an integer. Note that the right side of inequality
(1.9) and that of inequality (1.10) are both at most 0 if x1 ≥ k − 2x0; so we may assume that
x1 ∈ {0, . . . , k− 2x0− 1}. Let us fix λ = 4, and prove the stronger statement that the right side of
inequality (1.10), which we call R, is always at most 2k−2x0−1. This implies both (1.9) and (1.10).

We define yj :=
xj

1 + λj−1
, for every j ∈ {1, . . . , d− 1}.

• If x1 = k − 2x0 − 1, then

R = 2k−2x0−1 ·
d−1∏
j=2

(
1 +

1

λj−1

)xj (
1− 2

d−1∑
j=2

xj
1 + λj−1

)

= 2k−2x0−1 ·
d−1∏
j=2

(
1 +

1

λj−1

)(1+λj−1)yj
(

1− 2
d−1∑
j=2

yj

)

≤ 2k−2x0−1 ·
d−1∏
j=2

(
3125

1024

)yj (
1− 2

d−1∑
j=2

yj

)
by Fact 1

= 2k−2x0−1 ·
(

3125

1024

)y
(1− 2y) where y :=

d−1∑
j=2

yj

≤ 2k−2x0−1 ·max
y∈R+

(
3125

1024

)y
(1− 2y)

= 2k−2x0−1 by Fact 2.

• If x1 = k − 2x0 − 2, then

R = 2k−2x0−2 ·
d−1∏
j=2

(
1 +

1

λj−1

)xj (
2− 2

d−1∑
j=2

xj
1 + λj−1

)
.
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If xj = 0 for every 2 ≤ j ≤ d− 1, then R = 2k−2x0−1. Let us now assume otherwise, and let
j0 = min {j | xj > 0}. So in particular xj0 ≥ 1 and yj0 ≥ 1

1+λj0−1 . Then

R = 2k−2x0−2 ·
d−1∏
j=j0

(
1 +

1

λj−1

)xj (
2− 2

d−1∑
j=j0

xj
1 + λj−1

)

= 2k−2x0−2 ·
d−1∏
j=j0

(
1 +

1

λj−1

)(1+λj−1)yj
(

2− 2
d−1∑
j=j0

yj

)

≤ 2k−2x0−2 ·
d−1∏
j=j0

(
1 +

1

λj0−1

)(1+λj0−1)yj
(

2− 2
d−1∑
j=j0

yj

)
by Fact 1

= 2k−2x0−2 ·
(

1 +
1

λj0−1

)(1+λj0−1)y
(2− 2y) where y :=

d−1∑
j=j0

yj ≥
1

1 + λj0−1

≤ 2k−2x0−2 · max
y≥ 1

1+λj0−1

(
1 +

1

λj0−1

)(1+λj0−1)y
(2− 2y)

= 2k−2x0−1 by Fact 2.

• If x1 ≤ k − 2x0 − 3, then

R = 2x1 ·
d−1∏
j=2

(
1 +

1

λj−1

)xj (
k − 2x0 − x1 − 2

d−1∑
j=2

xj
1 + λj−1

)

= 2x1 ·
d−1∏
j=2

(
1 +

1

λj−1

)(1+λj−1)yj
(
k − 2x0 − x1 − 2

d−1∑
j=2

yj

)

≤ 2x1 ·
d−1∏
j=2

(
3125

1024

)yj (
k − 2x0 − x1 − 2

d−1∑
j=2

yj

)
by Fact 1

= 2x1 ·
(

3125

1024

)y
(k − 2x0 − x1 − 2y) where y :=

d−1∑
j=2

yj

≤ 2x1 ·max
y∈R

(
3125

1024

)y
(k − 2x0 − x1 − 2y)

= 2x1 ·
2

(
3125

1024

)k − 2x0 − x1

2

e ln

(
3125

1024

) by Fact 2

< 2k−2x0−1.
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We have shown that when λ = 4,

2k−3 + k

k
E [X0] +

2

k
E [X1] ≥ 1.

We let λ = 4, and apply Lemma 1.3.1 with
(
α0(v), α1(v), α2(v)

)
=
(

2k(v)−3+k(v)
k(v)

, 2
k(v)

, 0
)

for

every vertex v ∈ V (G), where k(v) is chosen such that 2 deg(v)+2k−3+k
k

is minimised in k = k(v), and
is always at least 4 since deg(v) is a non-negative integer. The explicit value of k(v) is

k(v) = b4 + log2 deg(v)− log2 log2 deg(v)e .

1.5 Bounds on the Hall ratio

We focus on establishing upper bounds on the Hall ratios of graphs with bounded maximum degree
and girth. These bounds are obtained by using the uniform distribution on Iα(G), for G in the
considered class of graphs, into Lemma 1.3.2 or Lemma 1.3.3.

1.5.1 Structural analysis of a neighbourhood

We start by introducing some terminology.

Definition 1.5.1.

1. A pattern of depth r is any graph P given with a root vertex v such that

∀u ∈ V (G), distG(u, v) ≤ r.

The layer at depth i of P is the set of vertices at distance i from its root vertex v.

2. A pattern P of depth r and root v is d-regular if all its vertices have degree exactly d, except
maybe in the two deepest layers where the vertices have degree at most d.

Definition 1.5.2. Let P be a pattern of depth r and root v. Let I be a maximum independent
set chosen uniformly at random from Iα(P ). We define ei(P ) := E [|I ∩N i

P (v)|] for each i ∈ [r+1].

1. The constraint associated to P is the pair c(P ) = (e(P ), n(P )), where e(P ) = (ei(P ))ri=0 ∈
(Q+)

r+1
, and n(P ) ∈ N is the cardinality of the constraint, which is the number of maximum

independent sets of P . Most of the time, we only need to know the value of e(P ), in which
case we characterise the constraint c(P ) = (e(P ), n(P )) only by e(P ). The value of n(P ) is
only needed for a technical reason, in order to be able to compute constraints inductively.

2. Given two constraints e, e′ ∈ (Q+)
r+1

, we say that e is weaker than e′ if, for any vector α ∈
(Q+)

r+1
it holds that

α>e′ ≥ 1 =⇒ α>e ≥ 1.

If the above condition holds only for all vectors α ∈ (Q+)
r+1

with non-increasing coordinates,
then we say that e is relatively weaker than e′.
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Note that e is weaker than e′ if and only if

∀i ∈ [r + 1], ei ≥ e′i,

and e is relatively weaker than e′ if and only if

∀i ∈ [r + 1],
i∑

j=0

ej ≥
i∑

j=0

e′j.

Remark 1.5.1. Let P be a pattern such that one of its vertices u is adjacent with some ver-
tices u1, . . . , uk of degree 1 in the next layer, where k ≥ 2. Then every maximum independent set
of P contains {u1, . . . uk} and not u. Consequently, e(P ) is weaker than e(P \ {u3, . . . , uk}) since,
letting i be the distance of u1 to the root of P , one has

ej(P ) =

{
ej(P \ {u3, . . . , uk}) if j 6= i, and

ei(P \ {u3, . . . , uk}) + (k − 2) if j=i.

1.5.2 Tree-like patterns

1.5.2.1 Rooting at a vertex

Fix a depth r ≥ 2. Let G be a d-regular graph of girth at least 2r + 2, and let I ∈ Iα(G) be a
maximum independent set drawn uniformly at random. For any fixed vertex v, we set J := I\N r[v],
and Xi(v) := I ∩N i(v), for each i ∈ [r + 1]. Finally, we set W := N r[v] \N(J). So J is the set of
vertices in I at distance at least r + 1 from v, and W is the set of vertices at distance at most r
from v uncovered by J. In particular, we know that I ∩N r[v] ⊆W.

Because I is a maximum independent set of G, it holds that I∩N r[v] is a maximum independent
set of G[W]. Conversely, if IW is a maximum independent set of G[W], then J∪IW is a maximum
independent set of G. Thus, for any independent set J of G \ N r[v], if one conditions on the
fact that J = J , then I ∩ N r[v] is a uniform random maximum independent set of G[W]. The
subgraph G[W] is a d-regular pattern of depth r with root vertex v, and since G has girth at
least 2r + 2, it follows that G[W] is a tree. Let Tr(d) be the set of acyclic d-regular patterns of
depth r.

We seek parameters (αi)i≤r such that the inequality
∑r

i=0 αiE [|Xi(v)|] ≥ 1 is satisfied regardless
of the choice of v. To this end, it is enough to pick the rational numbers αis in such a way that
the inequality is satisfied in any tree T ∈ Tr(d), when v is the root vertex. In a more formal way,
given any T ∈ Tr(d), the vector α = (α0, . . . , αr) must be compatible with the constraint e(T ),
that is, α>e(T ) ≥ 1 for each T ∈ Tr(d).

An application of Lemma 1.3.2 then lets us conclude that the desired bound is the solution to
the following linear program.
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|G|
α(G)

≤ min α0 +
r∑
i=1

αid(d− 1)i−1 (1.11)

such that

∀T ∈ Tr(d),
r∑
i=0

αiei(T ) ≥ 1

∀i ≤ r, αi ≥ 0.

The end of the proof is made by computer generation of Tr(d), in order to generate the desired
linear program, which is then solved again by computer computation. For the sake of illustration,
we give a complete human proof of the case where r = 2 and d = 3. There are 10 trees in T2(3).
One can easily compute the constraint (e0(T ), e1(T ), e2(T )) for each T ∈ T2(3); they are depicted
in Figure 1.5.1. Note that constraints e8, e9 and e10 are weaker than constraint e7, so we may
disregard these constraints in the linear program to solve. Note also that constraint e0 is relatively
weaker than constraint e1, and so may be disregarded as well, provided that the solution of the
linear program is attained by a vector α with non-increasing coordinates, which will have to be
checked. The linear program to solve is therefore the following.

minimise α0 + 3α1 + 6α2

such that



5/2 · α1 + 1/2 · α2 ≥ 1

2α1 + 2α2 ≥ 1

1/5 · α0 + 8/5 · α1 + 6/5 · α2 ≥ 1

1/3 · α0 + α1 + 8/3 · α2 ≥ 1

1/2 · α0 + 1/2 · α1 + 4α2 ≥ 1

α0 + 3α2 ≥ 1

α0, α1, α2 ≥ 0.

The solution of this linear program is 85
31
≈ 2.741935, attained by α =

(
19
31
, 14

31
, 4

31

)
, which indeed

has non-increasing coordinates. This is an upper bound on ρ(3, 6), though we prove a stronger one
through a more involved computation in Section 1.5.3.2.

1.5.2.2 Inductive computation of the vectors e(T )

To compute e(T ) for each T ∈ Tr(d), one can enumerate all the maximum independent sets of T
and average the size of their intersection with each layer of T . For general graphs, there might
be no better way of doing so, however the case of Tr(d) can be treated inductively by a standard
approach: we distinguish between the maximum independent sets that contain the root and those
that do not. We introduce the following notation.

Definition 1.5.3. Let c = (e, n) and c′ = (e′, n′) be two constraints.
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e1 = (0, 3, 0) e2 =
(
0, 5

2
, 1

2

)
e3 = (0, 2, 2) e4 =

(
1
5
, 8

5
, 6

5

)
e5 =

(
1
3
, 1, 8

3

)

e6 =
(

1
2
, 1

2
, 4
)

e7 = (1, 0, 3) e8 = (1, 0, 4) e9 = (1, 0, 5) e10 = (1, 0, 6)

Figure 1.5.1: An enumeration of e(T ) for all trees T ∈ T2(3).

1. The operation ∨ on c and c′ returns the constraint

c ∨ c′ :=


(

n

n+ n′
e +

n′

n+ n′
e′, n+ n′

)
if ‖e‖1 = ‖e′‖1,

c if ‖e‖1 > ‖e′‖1,

c′ if ‖e‖1 < ‖e′‖1.

2. The operation ⊕ on c and c′ returns the constraint c⊕ c′ :=
(
e + e′, n · n′

)
.

For a given tree T ∈ Tr(d) with root v, let c0(T ) be the constraint associated to T where
v is forced (we restrict to the maximum independent sets which contain v when computing the
constraint c0(T )), and c1(T ) be the constraint associated to T where v is forbidden. It readily
follows from Definition 1.5.3 that

c(T ) = c0(T ) ∨ c1(T ).

If (Ti)i∈[d] are the subtrees of T rooted at the children of the root v (some of which might be
empty). It holds that

c0(T ) =
(
(0, e), n

)
where (e, n) =

⊕
i∈[d]

c(Ti), and

c1(T ) =
(
(1, e), n

)
where (e, n) =

⊕
i∈[d]

c0(Ti).

We thus obtain an inductive way of computing e(T ) by using the following initial values.

c0(∅) :=
(
(0), 1

)
c1(∅) :=

(
(0), 0

)
c0({v}) :=

(
(0), 1

)
c1({v}) :=

(
(1), 1

)
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Following the enumeration of the vectors e(T ) for T ∈ Tr(d) described in Section 1.5.2.2, one
obtained the following statement by computer calculus.

Lemma 1.5.1. The solution to the linear program (1.11) is

T3(3) :
5849

2228
≈ 2.625224 with α =

(
953

2228
,
162

557
,

81

557
,

21

557

)
,

T4(3) :
2098873192

820777797
≈ 2.557176 with α =

(
225822361

820777797
,
18575757

91197533
,
10597368

91197533
,

5054976

91197533
,

1172732

91197533

)
,

T5(3) :
29727802051155412

11841961450578397
≈ 2.510378 with α =

(
3027359065168972

11841961450578397
,

2216425114872980

11841961450578397
,

2224040336719575

23683922901156794
,

2026654050681425

47367845802313588
,

403660478424775

23683922901156794
,

51149140376400

11841961450578397

)
,

T3(4) :
7083927

2331392
≈ 3.038497 with α =

(
123345

333056
,

68295

291424
,

12283

145712
,

2911

145712

)
,

T4(4) : 3 with α =

(
7

43
,

6

43
,

19

258
,

7

258
,

1

258

)
,

T2(5) :
69

19
≈ 3.631579 with α =

(
37

57
,

6

19
,

4

57

)
,

T3(5) :
7

2
= 3.5 with α =

(
77

282
,

25

141
,

17

282
,

2

141

)
.

1.5.2.3 Rooting in an edge

Definition 1.5.1 can be extended to a pattern with a root-edge instead of a root-vertex. The distance
in a pattern P between a vertex w and an edge uv is defined to be min{distP (w, u), distP (w, v)}.
The depth of a pattern P rooted in an edge e is then the largest distance between e and a vertex
in P . It is then possible to follow the same analysis as in Section 1.5.2.1 with edge-rooted patterns:
in order for the edge-rooted pattern of depth r to always be a tree, the graph G must have girth
at least 2r + 3. Let T ′r (d) be the set of acyclic edge-rooted d-regular patterns of depth r. By
Lemma 1.3.3, the linear program to solve is now the following.

|G|
α(G)

≤ min 2
r∑
i=0

αi(d− 1)i (1.12)

such that

∀T ∈ T
′
r (d),

r∑
i=0

αiei(T ) ≥ 1

∀i ≤ r, αi ≥ 0.

For a given tree T ∈ T ′r (d) rooted in e = uv, it is possible to compute e(T ) using the constraints
associated to vertex-rooted trees. If Tu and Tv are the subtrees of T respectively rooted at u and
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at v, then it readily follows from Definition 1.5.3 that

c(T ) =
(
c0(Tu)⊕ c0(Tv)

)
∨
(
c0(Tu)⊕ c1(Tv)

)
∨
(
c1(Tu)⊕ c0(Tv)

)
. (1.13)

Following the enumeration of the vectors e(T ) for T ∈ T ′r (d) described earlier, the next state-
ment is obtained by computer calculus.

Lemma 1.5.2. The solution to the linear program (1.12) is

T ′2 (3) :
30

11
≈ 2.72727 with α =

(
1

2
,
13

44
,

3

44

)
,

T ′3 (3) :
125

48
≈ 2.604167 with α =

(
11

32
,

5

24
,

3

32
,

1

48

)
,

T ′4 (3) :
14147193

5571665
≈ 2.539132 with α =

(
98057

506515
,

159348

1114333
,

3688469

44573320
,

1752117

44573320
,

402569

44573320

)
,

T ′2 (4) :
41

13
≈ 3.153846 with α =

(
11

26
,

3

13
,

2

39

)
,

T ′3 (4) :
127937

42400
≈ 3.017382 with α =

(
5539

16960
,

1737

10600
,

257

5300
,

399

42400

)
,

T ′2 (5) :
18

5
= 3.6 with α =

(
17

45
,

8

45
,

2

45

)
.

The bounds obtained in Lemma 1.5.2 are valid for graphs of girth at least 2r+ 3. It turns out
that the same bounds, with the same α, remain valid for graphs of girth 2r + 2 = 6, when r = 2
and d ∈ {3, 4}. We were not able to check this for higher values of r or d, but we propose the
following conjecture which would explain and generalise this phenomenon.

Conjecture 1.5.1. Let P be a d-regular edge-rooted pattern of depth r and of girth 2r + 2. Then
the constraint e(P ) is weaker than some convex combination of constraints e(T ) with T ∈ T ′r (d).
More formally, there exist T1, . . . , Tm ∈ T ′r (d) and λ1, . . . , λm ∈ [0, 1] with

∑m
i=1 λi = 1 such that

for any α ∈ (Q+)
r+1

,

α>

(
m∑
i=1

λie(Ti)

)
≥ 1 =⇒ α>e(P ) ≥ 1.

1.5.3 More complicated patterns

1.5.3.1 Rooting at a vertex

Let us fix a depth r ≥ 2. Let G be a d-regular graph of girth g ≤ 2r + 1. We repeat the same
analysis as in Section 1.5.2.1: we end up having to find a vector α ∈ Qr+1 compatible with all the
constraints generated by vertex-rooted d-regular patterns of depth r and girth g. Letting Pr(d, g)
be the set of such patterns, we thus want that

∀P ∈ Pr(d, g), α>e(P ) ≥ 1.

In this setting, we could do no better than performing an exhaustive enumeration of every
possible pattern P ∈ Pr(d, g), and computing the associated constraint e(P ) through an exhaustive
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enumeration of Iα(P ). The complexity of such a process grows fast, and we considered only
depth r ≤ 2 and degree d ≤ 4. Since the largest value of the Hall ratio over the class of 3-regular
graphs of girth 4 or 5 is known to be 14

5
= 2.8, and the one of 4-regular graphs of girth 4 is known

to be 13
4

= 3.25, the only open value in these settings is for the class of 4-regular graphs of girth 5.
Unfortunately, this method is not powerful enough to prove an upper bound lower than 13

4
, the

obtained bound for P2(4, 5) being 82
25

= 3.28. It is more interesting to root the patterns in an edge.

1.5.3.2 Rooting in an edge

Similarly, we define P ′r(d, g) to be the set of edge-rooted d-regular patterns of girth g. For fixed r
and g, we seek for the solution of the following linear program.

|G|
α(G)

≤ min 2
r∑
i=0

αi(d− 1)i (1.14)

such that

∀P ∈ P
′
r(d, g),

r∑
i=0

αiei(P ) ≥ 1

∀i ≤ r, αi ≥ 0.

Again, our computations were limited to the cases where r ≤ 2 and d ≤ 4. However, we
managed to prove improved bounds for girth 6 when d ∈ {3, 4}, which seems to support Conjec-
ture 1.5.1.

Lemma 1.5.3. The solution to the linear program (1.14) is

P ′2(3, 6) :
30

11
≈ 2.72727

P ′2(4, 6) :
41

13
≈ 3.153846

with α =

(
1

2
,
13

44
,

3

44

)
,

with α =

(
11

26
,

3

13
,

2

39

)
.

1.6 Graphs with few triangles

We next discuss our main result, Theorem 1.1.11, in slightly deeper context. We in fact show a
sharp, general lower bound on occupancy fraction for graphs of bounded local triangle fraction, to
which Theorem 1.1.11(i) is corollary.

Theorem 1.6.1. Suppose T,∆, λ satisfy, as ∆→∞, that

∆ ln(1 + λ) = ω(1) and
2T ln(1 + λ)2

W (∆ ln(1 + λ))
= o(1).

In any graph G of maximum degree ∆ in which every vertex is contained in at most T triangles,
writing I for the random independent set from the hard-core model on G at fugacity λ, the occupancy
fraction satisfies

E [|I|]
n(G)

≥ (1 + o(1))
λ

1 + λ

W (∆ ln(1 + λ))

∆ ln(1 + λ)
.
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This may be viewed as generalising [34, Thm. 3]. By monotonicity of the occupancy fraction in
λ (see e.g. [34, Prop. 1]), and the fact that a uniform choice from I(G) is a hard-core distribution

with λ = 1, Theorem 1.1.11(i) follows from Theorem 1.6.1 with λ = min
{
ε, 1/
√
T
}

. Theorem 1.6.1

is asymptotically optimal. More specifically, in [34] it was shown how the analysis of [14] yields
that, for any fugacity λ = o(1) in the range allowed in Theorem 1.6.1, the random ∆-regular graph
(conditioned to be triangle-free) with high probability has occupancy fraction asymptotically equal
to the bound in Theorem 1.6.1. In Section 1.6.3, we show our methods break down for λ outside
this range, so that new ideas are needed for any improvement in the bound for larger λ.

Moreover, the asymptotic bounds of Theorems 1.1.10 and 1.1.11 cannot be improved, for any
valid choice of f as a function of ∆, by more than a factor of between 2 and 4. This limits the
hypothetical range of λ in Theorem 1.6.1. This follows by considering largest independent sets in a
random regular construction or in a suitable blow-up of that construction [108]; see Section 1.6.3.

Observe that Theorem 1.1.11(ii) trivially fails if we average T on all the vertices of the graph,
since the presence of a (∆ + 1)-vertex clique is then no longer excluded. It is however still possible
to have a version of the theorem with a maximum average value of T taken over all subgraphs.
In any case, Theorems 1.1.10 and 1.1.11 may appear incompatible, since the former has a global
condition, while the latter has a local one. Nevertheless, either assertion in Theorem 1.1.11 is
indeed (strictly) stronger.

Proof of Theorem 1.1.10. Without loss of generality we may assume that ε > 0 is small enough
so that (1− ε2)

2
(1− ε/2) ≥ 1− ε. Let G be a graph on n vertices of maximum degree ∆ with at

most Tn/3 triangles. Call v ∈ V (G) bad if the number of triangles of G that contain v is greater
than ε−2T . Let B be the set of all bad vertices. Note that Tn > |B| ε−2T and so |B| < ε2n.
Let H be the subgraph of G induced by the subset V (G) \ B. Then H is a graph of maximum
degree ∆ on at least(1− ε2)n vertices such that each vertex is contained in at most ε−2T triangles.
Provided ∆/

√
T is large enough, either of (i) and (ii) in Theorem 1.1.11 implies that H, and thus

G, contains an independent set of size

(
1− ε2

)(1− ε2)n ln ∆√
ε−2T

∆
≥
(
1− ε2

)2
n
(

ln ∆√
T

+ ln ε
)

∆

≥
(
1− ε2

)2
(1− ε/2)

n ln ∆√
T

∆

≥ (1− ε)
n ln ∆√

T

∆
,

where on the second line we used that ln ε ≥ − ε
2

ln ∆√
T

when ∆√
T

is large enough.

1.6.1 Another analysis of the hard-core model

A crucial ingredient in the proofs is an occupancy guarantee from the hard-core model, which we
establish in Lemma 1.6.2 below. This refines an analysis given in [34]. Given G, I ∈ I(G), and
v ∈ V (G), let us call a neighbour u ∈ N(v) of v externally uncovered by I if u /∈ N(I \N(v)).

Lemma 1.6.2. Let G be a graph and λ > 0. Let I be an independent set drawn from the hard-core
model at fugacity λ on G.
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(i) For every v ∈ V (G), writing Fv for the subgraph of G induced by the neighbours of v externally
uncovered by I,

P [v ∈ I] ≥ λ

1 + λ
(1 + λ)−E[|V (Fv)|].

(ii) Moreover,

E [|I|] ≥ λ

1 + λ
n(G)(1 + λ)− ad(G).

Proof. The first part follows from two applications of the spatial Markov property of the hard-core
model. First, we have

P [v ∈ I] =
λ

1 + λ
P [I ∩N(v) = ∅] ,

because conditioned on a value I \ {v} = J such that J ∩N(v) = ∅ there are two realisations of
I, namely J and J ∪ {v}, giving

P [v ∈ I | J ] =
λ|J |+1

λ|J | + λ|J |+1
=

λ

1 + λ
,

and conditioned on I \ {v} = J such that J ∩N(v) 6= ∅, v cannot be in I.

Second, the spatial Markov property gives that I ∩ N(v) is a random independent set drawn
from the hard-core model on Fv. Then I ∩ N(v) = ∅ if and only if this random independent set
in Fv is empty. It follows that

P [I ∩N(v) = ∅] = E
[

1

ZFv(λ)

]
≥ E

[
(1 + λ)−n(Fv)

]
≥ (1 + λ)−E[n(Fv)],

since the graph on n(Fv) vertices with largest partition function is the graph with no edges, and
by convexity. This completes the proof of (i).

By the fact that |V (Fv)| ≤ deg(v) we also have for all v ∈ V (G) that

P [v ∈ I] ≥ λ

1 + λ
(1 + λ)− deg(v).

Then (ii) follows by convexity:

E [|I|] =
∑

v∈V (G)

P [v ∈ I] ≥ λ

1 + λ

∑
v∈V (G)

(1 + λ)− deg(v)

≥ λ

1 + λ
n(G)(1 + λ)− ad(G).

Lemma 1.6.3. Let G be a graph of maximum degree ∆ where every vertex is contained in at most
T triangles, and λ > 0 be a given real. Let I be an independent set drawn from the hard-core model
at fugacity λ on G. Then, for every v ∈ V (G),

E [|I|]
n(G)

≥ min
z≥0

max

{
λ

1 + λ
(1 + λ)−z,

λ

1 + λ

z

∆
(1 + λ)−

2T
z

}
.
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Proof. Note that∑
v∈V (G)

E [|N(v) ∩ I|] =
∑

v∈V (G)

∑
u∈N(v)

P [u ∈ I] =
∑

u∈V (G)

deg(u)P [u ∈ I]

≤ ∆
∑

u∈V (G)

P [u ∈ I] = ∆E [|I|] .

Therefore, we may bound E [|I|] by above in two distinct ways:

E [|I|] ≥ n(G)

∆

λ

1 + λ
z(1 + λ)−

2T
z and

E [|I|] ≥ n(G)
λ

1 + λ
(1 + λ)−z,

where z is the expected number of externally uncovered neighbours of a uniformly random vertex.
The result follows.

Lemma 1.6.4. Let G be a graph. We denote by t(v) the number of triangles in G containing v,
for every v ∈ V (G). We let λ > 0, and α(v), β(v) > 0 be associated to every v ∈ V (G). Let H
be any induced subgraph of G, and IH be an independent set drawn from the hard-core model at
fugacity λ on H. Then, for any v ∈ V (H), it holds that

α(v)P [v ∈ IH ] + β(v)E [|NH(v) ∩ IH |] ≥
λ

1 + λ

(
min
z≥0

α(v)(1 + λ)−z + β(v)z(1 + λ)−
2t(v)
z

)
.

Proof. Write Fv for the graph induced by the neighbours of v externally uncovered by I in H, and
zv = E [n(Fv)]. By Lemma 1.6.2(i) we have

P [v ∈ I] ≥ λ

1 + λ
(1 + λ)−zv .

For the other term, we apply Lemma 1.6.2(ii) to the graph Fv, for which by assumption ad(Fv) ≤
2t(v)
n(Fv)

. If J is an independent set drawn from the hard-core model at fugacity λ on Fv, then by
convexity

E [|N(v) ∩ I|] = E [|J|] ≥ λ

1 + λ
E
[
n(Fv)(1 + λ)−

2t(v)
n(Fv)

]
≥ λ

1 + λ
zv(1 + λ)−

2t(v)
zv ,

so the result follows by minimising on all the possible values of zv.

1.6.2 The proofs

Proof of Theorem 1.6.1. We optimise the lower bound in Lemma 1.6.3. As the first argument of
the maximisation in the lower bound of the lemma is increasing in z while the second is decreasing,
the minimum occurs where these two arguments are equal: at z0 ∈ R+ satisfying

(1 + λ)−z0 =
z0

∆
(1 + λ)

− 2T
z0 . (1.15)



1.6. GRAPHS WITH FEW TRIANGLES 115

Let us now give an estimate of z0.

z0e
z0 ln(1+λ) = ∆e

2T ln(1+λ)
z0

z0 ln(1 + λ) = W
(

∆ ln(1 + λ)e
2T ln(1+λ)

z0

)
≥ W (∆ ln(1 + λ)), since e

2T ln(1+λ)
z0 ≥ 1 and W is increasing.

We conclude that

W (∆ ln(1 + λ)) ≤ z0 ln(1 + λ) ≤ W

(
∆ ln(1 + λ)e

2T ln(1+λ)2

W (∆ ln(1+λ))

)
.

So by using the assumptions of the theorem,

z0 ln(1 + λ) ≤ W ((1 + o(1))∆ ln(1 + λ)) = W (∆ ln(1 + λ)) + o(1).

We now use Lemma 1.6.3 to conclude that

E [|I|]
n(G)

≥ λ

λ+ 1
(1 + λ)−z0

≥ λ

1 + λ
e−W (∆ ln(1+λ))+o(1)

= (1 + o(1))
λ

1 + λ

W (∆ ln(1 + λ))

∆ ln(1 + λ)
.

Proof of Theorem 1.1.11(ii). Supposing that λ > 0 is fixed, write for every vertex v ∈ V (G)

gv(x) =
λ

1 + λ

(
α(v)(1 + λ)−x + β(v)x(1 + λ)−

2t(v)
x

)
.

By Lemma 1.6.4 and Lemma 1.3.1, we can find the desired local fractional colouring, of total
weight at most max

v∈V
α(v) + β(v) deg(v), provided gv(x) ≥ 1 for all x ≥ 0 and for every vertex

v ∈ V (G).

It is easy to verify that with α(v), β(v), t(v), λ > 0 the function gv is strictly convex, so the
minimum of gv(x) occurs when g′v(x) = 0, or

(1 + λ)−x =
β(v)

α(v)

(
1

ln(1 + λ)
+

2t(v)

x

)
(1 + λ)−

2t(v)
x .

Let z0 satisfy

(1 + λ)−z0 =
z0

deg(v)
(1 + λ)

− 2t(v)
z0 .

Then by choosing

α(v)

β(v)
=

deg(v)

z0

(
1

ln(1 + λ)
+

2t(v)

z0

)
, (1.16)
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the minimum of g occurs at z0. Now the equations g(z0) = 1 and (1.16) give us values of α(v) and
β(v) in terms of λ, d(v), and t(v). This means

g(z0) =
λ

1 + λ
(1 + λ)−z0

(
α(v) + β(v) deg(v)

)
= 1,

and hence for every vertex v ∈ V (G) it holds that

α(v) + β(v) deg(v) =
1 + λ

λ
(1 + λ)z0 .

We pose λ = min
{
ε, 1/
√
T
}

, and note that the analysis of (1.15) ensures that

z0 ln(1 + λ) = W (deg(v) ln(1 + λ)) + o(1).

We also use the fact that
(1 + x) ln(1 + x)

x
≤ 1 +

x

2
,

for every x > 0. An application of Lemma 1.3.1 yields a local fractional colouring w of G such
that w(v) ⊆ [0, γα,β(v)] for every vertex v ∈ V (G), where

γα,β(v) ≤ 1 + λ

λ
ez0 ln(1+λ)

=
1 + λ

λ
eW (deg(v) ln(1+λ))+o(1)

= (1 + o(1))
(1 + λ) ln(1 + λ)

λ

deg(v)

ln
(

deg(v) ln(1 + λ)
)

≤ (1 + o(1))

(
1 +

λ

2

)
deg(v)

ln(deg(v)λ)

≤ (1 + ε)
deg(v)

ln deg(v)√
T

,

provided
deg(v)√

T
is large enough.

1.6.3 Sharpness

As stated in Theorem 1.1.8, for every value of ∆ there are triangle-free ∆-regular graphs G∆ in
which the independence ratio is at most

2 ln ∆

∆
.

So G∆ certifies Theorems 1.1.10 and 1.1.11 to be sharp up to an asymptotic factor 2 provided
T = o(∆). For larger T , let us for completeness reiterate an observation from [108]. For a given
triangle-free graph G of maximum degree d, and an integer k, let kG be the graph G � Kk. It
is of maximum degree ∆ := (d + 1)k − 1, and such that each vertex is contained in at most
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T := (d+ 1)
(
k
2

)
− k + 1 triangles. Moreover,

α(kG)

n(kG)
=

1

k
· α(G)

n(G)
.

For T ≥ ∆, let d =
⌊

∆2

2T

⌋
− 1 and let bGd be the graph obtained from Gd by substituting each

vertex with a clique of size b =
⌊

2T
∆

⌋
. Then bGd is regular of degree b(d + 1) − 1 ≤ ∆ such that

each neighbourhood contains at most b2(d+1)
2
≤ T edges, and so bGd has at most |V (bGd)|T

3
triangles.

In Gd the largest independent set is of size

(2 + o(1))
|V (Gd)|

d
ln d = (4 + o(1))

|V (bGd)|
∆

ln
∆√
T
. (1.17)

The same is clearly true in bGd, and this is an asymptotic factor 4 greater than the lower bound in
Theorem 1.1.10. Last, observe that for T ≤ ∆, G∆ certifies that Theorems 1.1.10 and 1.1.11 are
asymptotically off by at most a multiplicative factor 4 from extremal, and so this holds throughout
the range of T .





Chapter 2

Distance colouring and cycles

The constraint for the colouring c of a graph G to be proper can be formulated in the following
way: If two different vertices u and v are a distance at most 1 in G, then c(u) and c(v) must be
different. For an edge colouring c′, the same kind of reformulation is possible: If two different edges
e and e′ are at distance at most 1 in the line graph L(G), then c′(e) and c′(e′) must be different.

Given such a formulation, most mathematicians have the impulse to wonder about its general-
isation to larger distances. What if we extend the constraint up to a given fixed distance t ≥ 1 in
the graph? This is what we call a distance-t (edge-)colouring.

The main content of this chapter is covered in the journal articles [70] and [71].

2.1 Formulation of the problem and motivation

For a positive integer t, let us recall that the t-th power Gt of a (simple) graph G = (V,E) is a graph
with vertex set V in which two distinct elements of V are joined by an edge if they are at distance
at most t in G. We define the distance-t-chromatic number χt(G) and distance-t chromatic index
χ′t(G) as, respectively, the chromatic number of the t-th power of G, and the chromatic number of
the t-th power of the line graph of G;

χt(G) := χ
(
Gt
)
, and

χ′t(G) := χ
(
L(G)t

)
.

With this formulation, the upper bounds yielded by the greedy algorithm for these two param-
eters are

χt(G) ≤ ∆
(
Gt
)

+ 1 ≤ ∆(G)t + 1, and

χ′t(G) ≤ ∆
(
L(G)t

)
+ 1 ≤ 2∆(G)t.

For distance t = 1, these are the classical chromatic number and chromatic index. Theo-
rem 0.2.13 (Brooks) states that the upper bound ∆(G) + 1 is reached for the chromatic number,
and characterises the graphs reaching the bound as exactly the cliques and odd cycles. Theo-
rem 0.2.24 (Vizing) states that the upper bound for the chromatic index is actually also ∆(G) + 1,
thus way smaller than the greedy one of 2∆(G)−1. Moreover, since ∆(G) is a lower bound for the
chromatic index of G, it can take only two possible values, and it is NP-hard to decide whether a
given graph G has chromatic index ∆(G) or ∆(G) + 1 [60].

119
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For sparser graphs, we have seen throughout Chapter 1 through Johansson’s theorem that
the chromatic number of triangle-free graphs of degree at most d is Θ(d/ ln d) as d → ∞. It
was observed in [7] that this last statement with C`-free, ` > 3, rather than triangle-free also
holds. In conclusion, excluding any cycle length has a sensible effect on the extremal behaviour of
the chromatic number among graphs of fixed maximum degree; its extremal asymptotic value is
decreased by a logarithmic factor. This behaviour does not hold for the chromatic index, as it is
always lower bounded by ∆(G) — any copy of K1,∆(G) in G yields a clique K∆(G) in L(G).

This consideration for distance 1 leads to the following question for larger distances.

Problem 2.1.1. What is the largest possible value of the distance-t chromatic number and index
among all graphs G with maximum degree at most d, when some cycle C` might be forbidden?

For both parameters, we are interested in finding those choices of ` (depending on t) for which
there is an upper bound that is o(dt) as d→∞. Moreover, by probabilistic constructions [8, 69],
these upper bounds must be Ω(dt/ ln d) as d→∞ regardless of the choice of `. On the other hand,
while finding the exact maximum value of the distance-t chromatic number or index with no cycle
restrictions seems to be a fundamentally hard problem, there are several constructions — such as
the Hamming graph H(t, d/t) = Kd/t

�t or the t-dimensional De Bruijn graph on d/2 symbols —
which demonstrate that this value is Θ(dt) as d→∞ for fixed t. We are therefore also interested
in the choices of ` which do not affect this asymptotic behaviour. We first discuss some previous
work.

The distance-2 chromatic index appears in the literature as the strong chromatic index . With
no cycle restriction, the above question is directly related to a conjecture from Erdős and Nešetřil.

Conjecture 2.1.1 (Erdős, Nešetřil, 1985). For every graph G of maximum degree d,

χ′2(G) ≤ d2 +

⌊
d

2

⌋2

≤ 5

4
d2.

This conjecture, if true, would be sharp. Indeed, the graph Gk = C5 � Ik, where Ik stands for
an independent set of size k, is 2k-regular, contains 5k2 edges, and is such that L(Gk)

2 is a clique.
It took more than a decade in order to obtain a first step in the direction of this conjecture; in
1997 Molloy and Reed [91] manage to provide a slightly better bound than the trivial one for the
strong chromatic index of graphs of maximum degree d ≥ d0 for some fixed d0, namely 1.998d2.
Their method has since been tightened in order to provide what is the best-to-date result in favor
of the conjecture, which still remains widely open.

Theorem 2.1.2 (Bonamy, Perret, Postle, 2018 [20]). There exists some integer d0 > 0 such that,
for every graph G of maximum degree d ≥ d0,

χ′2(G) ≤ 1.835d2.

The behaviour of the strong chromatic index χ′2 with some cycle restrictions was considered
by Mahdian [87] who showed that the largest strong chromatic chromatic index over all C4-free
graphs of maximum degree at most d is C · d2/ ln d, with 1/2 ≤ C ≤ 2 + o(1) as d→∞. Vu [119]
extended this to hold — up to a worse constant — for any fixed bipartite graph instead of C4,
which in particular implies the statement for any C`, ` even. Since the complete bipartite graph
Kd,d satisfies χ′2(Kd,d) = d2, the statement does not hold for C`, ` odd. This completely settles the
second question asymptotically for χ′2 = χ′s.
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The case of the distance-2 chromatic number was considered and settled asymptotically by
Alon and Mohar [8] with restriction on the girth rather than forbidding one cycle. They showed
that the largest possible value of the distance-2 chromatic number taken over all graphs of girth
7 and of maximum degree at most d is Θ(d2/ ln d) as d → ∞. Moreover, there exist graphs of
girth 6 and of arbitrarily large maximum degree d such that their distance-2 chromatic number is
(1 + o(1))d2 as d→∞.

It is worth pointing out that the basic question unrestricted, i.e. asking for the extremal value
of the distance-t chromatic number or index over graphs of maximum degree d as d → ∞, is
likely to be very difficult if we ask for the precise (asymptotic) multiplicative constant. We have
seen that the question for χ′t includes the notorious strong edge-colouring conjecture of Erdős and
Nešetřil [44] as a special case. On the other hand, the question for χt amounts to a slightly weaker
version of a well-known conjecture of Bollobás on the degree–diameter problem [17].

Let us advance a systematic treatment of our basic question. Our main results are as follows,
which may be considered as extensions of the results of Johansson [65] and Mahdian [87] to
distance-t vertex- and edge-colouring, respectively, for all t.

Theorem 2.1.3. Let t be a positive integer and ε > 0 be an arbitrary small positive constant.

(i) Let ` ≥ 2t+ 2 be a fixed even integer. There exists ∆`,ε such that, for every C`-free graph G
of maximum degree ∆ ≥ ∆`,ε,

χt(G) ≤ (4 + ε)
∆t

ln ∆
.

(ii) Let ` ≥ 2t be a fixed even integer. There exists ∆`,ε such that, for every C`-free graph G of
maximum degree ∆ ≥ ∆`,ε,

χ′t(G) ≤ (8 + ε)
∆t

ln ∆
.

Theorem 2.1.4. Let t and ` be odd positive integers such that ` ≥ 3t, and ε > 0 be an arbitrary
small positive constant. There exists ∆`,ε such that, for every C`-free graph G of maximum degree
∆ ≥ ∆`,ε,

χt(G) ≤ (4 + ε)
∆t

ln ∆
.

Note that a lower bound on the supremum of the distance-t chromatic index of graphs of
arbitrary large girth and fixed maximum degree can be derived from random graphs.

Theorem 2.1.5 (Kaiser, Kang, 2014 [69]). For every d, t ≥ 1 and g ≥ 3, there exists a graph G
of maximum degree at most d, girth at least g, and distance-t chromatic index

χ′t(G) ≥ (1 + o(1))
dt

t ln d
.

In Section 2.3, we exhibit constructions to certify that Theorems 2.1.3 and 2.1.4 are sharp
in terms of odd cycle exclusion. So excluding all odd cycles outside of those mentioned by the
theorems does not affect the asymptotics of the upper bounds.

Proposition 2.1.6. Let t and ` be positive integers.

(i) For t even, the supremum of the distance-t chromatic number over bipartite graphs of maxi-
mum degree at most d is Ct · dt for some 2−t ≤ Ct ≤ 1.
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(ii) For t ≥ 2, the supremum of the distance-t chromatic index over bipartite C`-free graphs of
maximum degree at most d is C ′t · dt for some 21−t ≤ C ′t ≤ 2.

Proposition 2.1.7. Let t be an (odd) integer. The supremum of the distance-t chromatic number
over graphs of odd girth 3t and of maximum degree at most d is Ct · dt for some 4−t ≤ Ct ≤ 1.

Our proofs of Theorems 2.1.3 and 2.1.4 rely on direct applications of the following result of
Achlioptas, Iliopoulos, and Sinclair [1] which improves a previous result from Alon, Krivelevich
and Sudakov [7]. Its statement is that the chromatic number of a graph G can be bounded away
from ∆(G) when every vertex of G belongs to a bounded fraction of the maximum possible number
of triangles.

Lemma 2.1.8 (Achlioptas, Iliopoulos, Sinclair, 2018 [1]). For every ε > 0, there exist ∆ε and
fε such that, for every graph G of maximum degree ∆ ≥ ∆ε, if the neighbourhood of every vertex
v ∈ V (G) spans at most ∆2/f edges, with f ∈ [fε,∆

2 + 1], then

χ(G) ≤ (4 + ε)
∆

ln f
.

Note that this results holds for the list chromatic number, at the cost of a worse constant, as
was settled by Vu [119] through a direct use of nibble methods. So Theorems 2.1.3 and 2.1.4
also hold with list versions of χt and χ′t, with a worse (non explicit) constant. On the other hand,
Theorem 1.1.11(ii) presented in Chapter 1 provides a fractional version of this result with a leading
constant of 2 + ε instead of 4 + ε; it can therefore be applied in order to obtain fractional versions
of Theorems 2.1.3 and 2.1.4 with halved leading constants. If Conjecture 1.1.2 holds, then the
leading constants of these theorems can directly be halved.

Section 2.2 is devoted to showing the requisite density properties for Lemma 2.1.8. In order to
do so with respect to Theorem 2.1.3, we in part use some intermediary results that were employed
in a recent improvement [100] upon the classic result of Bondy and Simonovits [21] that the Turán
number ex(n,C2k) of the even cycle C2k, that is, the maximum number of edges in a graph on n
vertices not containing C2k as a subgraph, satisfies ex(n,C2k) = O(n1+1/k) as n→∞. It is natural
that techniques used to show sparsity of C2k-free graphs are helpful for Theorem 2.1.3, since the
application of Lemma 2.1.8 demands the verification of a local sparsity condition.

A motivating conjecture for us is one of Alon and Mohar, asserting that for every t there is
a critical girth gt such that χtgt(d) = Θ(dt) and χtgt+1(d) = Θ(dt/ ln d), just as for t = 1 (g1 = 3)
and t = 2 (g2 = 6). In light of the strong duality that there is between the distance-t chromatic
number and the distance-(t+1) chromatic index, a similar conjecture can be done on the existence
of a critical girth g′t for the distance-t chromatic index. If such critical girths exist, our best guess
would be that gt = 2t + 2 and g′t = 2t when t ≥ 2. Though we have reasons for suspecting that
this is true, we do not get so far as to conjecturing it yet. We are not aware of any previous work,
for any t ≥ 3, showing that gt or g′t, should they exist, are greater than 3 or 4 respectively, so
Section 2.4 is devoted to proving this, thus making a first step in the direction of the conjecture.

Before continuing, we introduce some abbreviating notation:

χt(d, g) := max {χt(G) | ∆(G) ≤ d and girth(G) ≥ g} , and

χ′t(d, g) := max {χ′t(G) | ∆(G) ≤ d and girth(G) ≥ g} .
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In this language, we have

χ1(d, 3) = d+ 1 and
d

2 ln d
≤ χ1(d, 4) ≤ (1 + o(1))

d

ln d
,

d(d− 1) + 1 ≤ χ2(d, 6) ≤ d2 + 1 and χ2(d, 7) = Θ

(
d2

ln d

)
,

d2 +

⌊
d

2

⌋2

≤ χ′2(d, 4) ≤ 1.835d2 and
d2

2 ln d
≤ χ′2(d, 5) ≤ (2 + o(1))

d2

ln d
.

Moreover, Theorem 2.1.3 implies that χt(d, 2t+ 3) = Θ(dt/ ln d) and χ′(d, 2t+ 1) = Θ(dt/ ln d) as
d→∞.

Our last contribution in this chapter is to give Ω(dt) lower bounds on χt(d, g) for various choices
of t and g(≤ 2t + 2). We show, in particular, that gt, if it exists, is at least 5 for t = 3, at least 6
for all t ≥ 4, and at least 8 for all t ≥ 11.

Theorem 2.1.9. There are constructions to certify the following statements hold.

(i) χ3(d, 5) ∼ d3 as d→∞ for infinitely many d;

(ii) χ4(d, 6) & d4/24 as d→∞ and χ4(d, 4) & 2d4/24 as d→∞;

(iii) χ5(d, 7) ∼ d5 as d→∞ for infinitely many d;

(iv) χ6(d, 6) & d6/26 as d→∞ and χ6(d, 6) & 3d6/26 for infinitely many d;

(v) χ7(d, 6) & 2d7/27 as d→∞;

(vi) χ8(d, 6) & d8/28 as d→∞ and χ8(d, 6) & 3d8/28 for infinitely many d;

(vii) χ10(d, 6) & d10/210 as d→∞ and χ10(d, 6) & 5d10/210 for infinitely many d;

(viii) for t = 9 or t ≥ 11, χt(d, 8) & dt/2t as d→∞, χt(d, 8) & 3dt/2t for infinitely many d, and,
if 5 | t, then χt(d, 8) & 5dt/2t for infinitely many d.

Moreover, these constructions are bipartite if t is even.

These lower bounds are obtained by a few different direct methods, including a circular con-
struction (Section 2.3) and two other somewhat ad hoc methods (Section 2.5).

A summary of current known bounds for Alon and Mohar’s problem is given in Table 2.1.
When reflecting upon the gaps between entries in the upper and lower rows, one should keep in
mind that among graphs G of maximum degree at most d and of girth lying strictly within these
gaps, the current best upper and lower bounds on the extremal value of χ(Gt) are off by only a
ln d factor from one another. We would be intrigued to learn of any constructions that certify
lim inf
t→∞

gt =∞, or of any upper bound on lim sup
t→∞

gt/t strictly less than 2.

2.2 Proofs of Theorems 2.1.3 and 2.1.4

In this section we prove the main theorems. Before proceeding, let us set notation and make some
preliminary remarks.
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t 1 2 3 4 5 6 7 8 9 10 11 ≥ 12

gt ≥ 3 6 5 6 7 6 6 6 8 6 8 8
g′t ≥ 4 6 8 6 12 6 6 6 8 6 8

Table 2.1: Bounds on the conjectured critical girths gt and g′t (if they exist).

Let G = (V,E) be a graph of maximum degree at most d. We will often need to specify the
vertices at some fixed distance from a vertex or an edge of G. Let i be a non-negative integer. If
x ∈ V , we write Ai = Ai(x) for the set of vertices at distance exactly i from x. If e ∈ E, we write
Ai = Ai(e) for the set of vertices at distance exactly i from an endpoint of e. We shall often abuse
this notation by writing A≤j for

⋃
i≤j Ai and so forth. We will write Gi = G[Ai, Ai+1] to be the

bipartite subgraph induced by the sets Ai and Ai+1

In proving the distance-t chromatic number upper bounds in Theorems 2.1.3 and 2.1.4 using
Lemma 2.1.8, given x ∈ V , we need to consider the number of pairs of distinct vertices in A≤t that
are connected by a path of length at most t. It will suffice to prove that this number is O (d2t−1) as
d→∞, so that Lemma 2.1.8 may be applied with f = O (d). In fact, in our enumeration we may
restrict our attention to paths of length exactly t whose endpoints are in At and whose vertices do
not intersect A<t. This is because |A≤i| ≤ di for all i and the number of paths of length exactly j
containing some fixed vertex is at most (j + 1)d(d− 1)j−1 for all j ≥ 1. So the number of pairs of
vertices in A≤t linked by a path of length at most t−1 is at most dt ·d

∑t−1
i=1(d−1)i ≤ d2t−1, and the

number of paths of length t containing a vertex in A<t is at most dt−1·(t+1)d(d−1)t−1 ≤ (t+1)d2t−1.
Similarly, in proving the distance-t chromatic index upper bound in Theorem 2.1.3 using

Lemma 2.1.8, given e ∈ E, we need to consider the number of pairs of distinct edges that each
have at least one endpoint in A<t and that are connected by a path of length at most t− 1. It will
suffice to prove that this number is O(d2t−1) as d → ∞. Similarly as above, in our enumeration
we may restrict our attention to paths of length exactly t− 1 whose endpoint edges both intersect
At−1 and whose vertices do not intersect A<t−1. The number of paths which do not satisfy this
restriction is upper bounded by (2t+ 6)d2t−1.

As mentioned in the introduction, for Theorem 2.1.3 we are going to use two intermediate
results of [100] concerning the presence of a Θ-subgraph, defined to be any subgraph that is a cycle
of length at least 2k with a chord.

Lemma 2.2.1 ([100]). Let k ≥ 3. Any bipartite graph of minimum degree at least k contains a
Θ-subgraph.

Lemma 2.2.2 ([100]). If G = (V,E) is C2k-free, then for i ∈ [k] and x ∈ V , neither G[Ai, Ai+1]
nor G[Ai] contains a bipartite Θ-subgraph, where Ai is defined based on G as above.

Proof of Theorem 2.1.3(i). Let ` = 2k for some k ≥ t+ 1, let G = (V,E) be a graph of maximum
degree at most d such that G contains no C` as a subgraph, and let x ∈ V . Let T denote the
number of pairs of distinct vertices in At that are connected by a path of length exactly t that
does not intersect A<t. As discussed at the beginning of the section, it suffices for the proof to
show that T ≤ Cd2t−1 where C is a constant independent of d, by Lemma 2.1.8.

We define A′ to be At+1 if |At+1| ≥ |At|, or At otherwise, and EH to be the set of edges in
At×At+1 whose endpoint in A′ is of degree at least ` in Gt = G[At, At+1]. If EH is non-empty, then
it induces some bipartite graph H = (XH ∪ YH , EH) of average degree d(H), such that XH ⊆ A′

and YH ⊆ (At ∪ At+1) \ A′. It must hold that d(H) < `, or else from H it would be possible
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to extract a bipartite graph H ′ of minimum degree d(H)/2 ≥ `/2 = k, which by Lemma 2.2.1
would contain a Θ-subgraph. This contradicts Lemma 2.2.2 which says Gt contains no bipartite
Θ-subgraph. Therefore,

` >
2 |EH |

|XH |+ |YH |
≥ 2 |EH |
|EH |
`

+ |YH |

and so |EH | < ` |YH | ≤ `dt, where the last inequality follows from the definition of A′.
Moreover, the graph G[At] is of average degree d(G[At]) < 2`, for otherwise it would be possible

to extract from G[At] a bipartite graph H ′ of average degree at least `. From H ′ it would then
be possible to extract a bipartite graph of minimum degree at least `/2 = k, which contains a
Θ-subgraph by Lemma 2.2.1. This contradicts Lemma 2.2.2 which says G[At] contains no bipartite

Θ-subgraph. If we denote by E[At] the set of edges of G[At], it means that |E[At]| < 2`|At|
2
≤ `dt.

Let us count the possibilities for a path x0 . . . xt of length t between two distinct vertices
x0, xt ∈ At that does not intersect A<t. We discriminate based on the first edge e0 = x0x1 of this
path, which can fall into three different cases.

1. e0 ∈ EH . We count the paths by first drawing e0 from the at most `dt possible choices in
EH , then drawing the remaining t− 1 vertices of the path one at a time, for which there are
at most d choices each. So the number of paths in this case is at most `d2t−1.

2. e0 ∈ (At×At+1)\EH . It means that x0 (resp. x1) is of degree less than ` in At+1 (resp. At) if
|At+1| < |At| (resp. if |At+1| ≥ |At|). We count the paths by first drawing x0 (resp. xt) from
the at most dt possible choices in At, then drawing the other t vertices one at a time with d
choices each, except for x1 (resp. x0) for which there are fewer than ` possible choices. The
number of paths in this case is therefore at most `d2t−1.

3. e0 ∈ E[At]. We count the paths by first drawing e0 from the at most `dt possible choices in
E[At], then drawing the remaining t− 1 vertices of the path one at a time, for which there
are at most d choices each. So the number of paths in this case is at most `d2t−1.

Summing over the above cases, the overall number of choices for the path x0 . . . xt is at most
3`d2t−1, giving the required bound on T .

Proof of Theorem 2.1.3(ii). Let ` ≥ 2t be even, let G = (V,E) be a graph of maximum degree at
most d such that G contains no C` as a subgraph, and let e = xy ∈ E. It is straightforward to check
that Lemma 2.2.2 is still valid with the sets Ai defined according to a root at the edge e rather
than a root vertex, by combining the corresponding statements when the Ai are rooted instead at
x or at y. Let T denote the number of pairs of distinct edges in G[At−1] or Gt−1 = G[At−1, At]
that are connected by a path of length t − 1 that does not intersect A<t−1. As discussed at the
beginning of the section, it suffices to show that T ≤ Cd2t−1 where C is a constant independent of
d, by Lemma 2.1.8.

We define A′ to be At if |At| ≥ |At−1|, or At−1 otherwise, and EH to be the set of edges
in At−1 × At whose endpoint in A′ is of degree at least ` in Gt−1. Exactly as in the proof of
Theorem 2.1.3(i), it follows from Lemmas 2.2.1 and 2.2.2 that |EH | < 2`dt−1 and |E[At−1]| <
2`dt−1, where E[At−1] denotes the set of edges of G[At−1] (the additional factor 2 comes from the
fact that the size of |Ai| is upper bounded by 2di rather than di, for every i, in the context of a
root edge).

Let us count the possibilities for a path x0 . . . xt+1, where x1 . . . xt is a path of length t − 1
between two distinct edges x0x1 and xtxt+1 of G[At−1] or Gt−1 that does not intersect A<t−1. We
discriminate based on the first edge e0 = x0x1 of this path, which can fall into three different cases.
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1. e0 ∈ EH . We count the paths by first drawing e0 from the at most 2`dt−1 possible choices
in EH , then drawing the remaining t edges of the path one at a time, for which there are at
most d choices each. So the number of paths in this case is at most 2`d2t−1.

2. e0 = ab where a ∈ At−1, b ∈ At, and e0 /∈ EH . It means that a (resp. b) is of degree less than
` in At (resp. At−1) if |At| < |At−1| (resp. if |At| ≥ |At−1|). There are now three different
possible subcases.

(a) b = x1. We count the paths by first drawing x0 (resp. xt if it is in At−1 or xt−1 ∈ At−1

otherwise) from the at most 2dt−1 possible choices in At−1, then drawing the other t+ 1
vertices one at a time with d choices each, except for x1 (resp. x0) for which there are
fewer than ` possible choices. The number of paths in this subcase is therefore at most
2`d2t−1 (resp. 4`d2t−1).

(b) a = x1 and x2 ∈ At−1. We count the paths by first drawing e1 = x1x2 from the at most
2`dt−1 possible choices in E[At−1], then drawing the other t edges one at a time with d
choices each. The number of paths in this subcase is therefore at most 2`d2t−1.

(c) a = x1 and x2 ∈ At. We count the paths by first drawing xt if it is in At−1 or xt−1 ∈ At−1

otherwise (resp. x0) from the at most 2dt−1 possible choices in At−1, then drawing the
other t+ 1 vertices one at a time with d choices each, except for x0 (resp. x1) for which
there are fewer than 2` possible choices. The number of paths in this subcase is therefore
at most 4`d2t−1 (resp. 2`d2t−1).

3. e0 ∈ E[At−1]. We count the paths by first drawing e0 from the at most 2`dt−1 possible choices
in E[At−1], then drawing the remaining t edges of the path one at a time, for which there
are at most d choices each. So the number of paths in this case is at most 2`d2t−1.

Summing over the above cases, the overall number of choices for the path x0 . . . xt is at most
12`d2t−1, giving the required bound on T .

In the proof of Theorem 2.1.4, we use the following lemma, which bounds the number of vertices
at distance at most t from some fixed vertex when we impose intersection conditions on certain
paths. The proof of this lemma illustrates the two main methods we use to bound the local density
as needed for Lemma 2.1.8.

Lemma 2.2.3. Let G = (V,E) be a graph of maximum degree at most d and let x0 ∈ V .

(i) Let S be a set of vertices at distance exactly t from x0 such that any two paths of length t
from x0 to distinct elements of S must intersect in at least one vertex other than x0. Then
|S| ≤ dt−1.

(ii) Let P be a path of length k > 0 starting at x0. Let S be a set of vertices at distance at most
t from x0 such that for every s ∈ S there is a path of length at most t from x0 to s that
intersects with P in at least one vertex other than x0. Then |S| ≤ kdt−1.

Proof of Lemma 2.2.3(i). Suppose V is given with some ordering. As before, for each i > 0 let
Ai = Ai(x0) denote the set of vertices at distance exactly i from x0 in G. We inductively construct
a breadth-first search tree T = Tt as follows.

• T0 consists only of the root x0.
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• If i > 0, then for every y ∈ Ai let ay be the vertex in N(y) ∩ Ai−1 whose path from x0 in
Ti−1 is least in lexicographical order. Then Ti is obtained from Ti−1 by adding each edge yay,
y ∈ Ai.

By assumption S ⊆ At. Let xt be the vertex in S whose path in T from x0 is least in lexicographical
order, and let Px = x0 . . . xt be that path.

Let yt ∈ S be distinct from xt and moreover suppose for a contradiction that the lowest common
ancestor of xt and yt in T is x0. Then yt is at distance at least t from x1, or else it would have had
x1 as an ancestor by the definition of T and the choice of Px. Letting Py = y0 . . . yt (where y0 = x0)
be the path from x0 to yt in T , by assumption Px and Py must have a common vertex other than
x0. So there are i, j > 0 such that xi = yj. It must be that j < i, for otherwise x1 . . . xiyj+1 . . . yt
would be a path of length i − 1 + t − j ≤ t − 1 between x1 and yt, a contradiction. This means
though that xi ∈ Ai is at distance at most j < i from x0, also a contradiction. We have shown
that S is contained in the subtree of T rooted at x1, which then implies that |S| ≤ dt−1.

Proof of Lemma 2.2.3(ii). To each vertex in S, there is a path of length at most t− 1 from some
vertex of P other than x0. There are at most dt−1 vertices within distance t− 1 of a fixed vertex
of P , so summing over all possible choices of such a vertex, this gives |S| ≤ kdt−1.

Proof of Theorem 2.1.4. Let ` ≥ 3t be odd, let G = (V,E) be a graph of maximum degree at most
d such that G contains no C` as a subgraph, and let x ∈ V . For convenience, let us call any path
contained in A≥t peripheral. Let T denote the number of pairs of distinct vertices in At that are
connected by a peripheral path of length t and are not connected by any path of length less than
t. As discussed at the beginning of the section, it suffices for the proof to show that T ≤ Cd2t−1

where C is a constant independent of d, by Lemma 2.1.8.

We specify a unique breadth-first search tree BFS = BFS(x) of G, rooted at x. Having fixed
an ordering of V , BFS is a graph on V whose edges are defined as follows. For every v ∈ Ai, i > 0,
we include the edge to the neighbour of v in Ai−1 that is least in the vertex ordering.

Since ` and t are odd, we know that ` = 3t + 2k for some non-negative integer k. For j ∈
{0, 1, . . . , 2k}, let us call a vertex v ∈ At j-implantable if it is the endpoint of some peripheral path
of length j, the other endpoint of which is in At. In particular, any vertex of At is 0-implantable.

We first show that the number of pairs of vertices connected by a peripheral path of length
t which has a 2k-implantable endpoint is O(d2t−1). Fix v to be a 2k-implantable vertex and
P = v0v1 . . . v2k a path certifying its implantability, so that v0 = v and (if k > 0) v2k ∈ At \ {v}.
By Lemma 2.2.3(ii) applied to G[A≥t] and P , the number of vertices connected by a peripheral
path of length t starting at v which intersects P at another vertex is at most 2kdt−1. Now consider
the set Y ⊆ At \ {v} such that there is a peripheral path of length t between v and y that does
not intersect P except at v for all y ∈ Y . If aY is the ancestor of v2k in BFS at layer A1, then Y is
contained in the subtree rooted at aY . Otherwise, there would be some y1 ∈ Y such that its lowest
common ancestor with v2k in BFS is x, which gives rise to a cycle of length 3t+ 2k that contains
x, v2k, v, y1, in that order, a contradiction. Thus |Y | ≤ dt−1, the number of pairs with v that are
counted by T is at most (1 + 2k)dt−1, and the number of pairs with a 2k-implantable vertex that
are counted by T is at most (1 + 2k)d2t−1.

Observe that we are already done if k = 0 since every vertex in At is 0-implantable by definition,
so assume from here on that k > 0. It remains for us to (crudely) count the number of pairs
(z0, zt) ∈ A2

t of non-2k-implantable vertices that are connected by a peripheral path z0 . . . zt of
length t and are not connected by any shorter path.
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First suppose k ≤ t. Trivially the number of choices for z0 is at most dt and the number
of choices for the sub-path z0 . . . zt−k is dt−k. Given zt−k, the choice for the remainder sub-path
zt−k . . . zt is restricted by the fact that zt is not 2k-implantable; in particular, all such sub-paths
must intersect at a vertex other than zt−k. By Lemma 2.2.3(i) applied to G[A≥t] and zt−k, for a
fixed choice of zt−k, the number of possibilities for zt is at most dk−1, and so the number of pairs
(z0, zt) in this case is at most dt · dt−k · dk−1 = d2t−1.

Next suppose k > t. We discriminate based on the smallest possible value j ≡ 2k (mod t)
such that z0, zt are both not j-implantable. Note that since we are in the case where z0, zt are not
2k-implantable, j ≤ 2k. More formally, we let κ0 = t if k mod t = 0, or κ0 = k mod t otherwise.
Let j = min {2κ0 + it | 0 ≤ i ≤ 2(k − κ0)/t and z0, zt are not j-implantable}. If j = 2κ0 ≤ 2t,
then we can treat this just like the previous case, which means there are at most d2t−1 choices for
the pair (z0, zt).

So suppose that 2κ0 < j ≤ 2k. By the definition of j, without loss of generality z0 is (j − t)-
implantable, and z0, zt are not j-implantable. We fix z0 and let P be a path of length j−t certifying
its (j − t)-implantability. First note that Lemma 2.2.3(ii) applied to G[A≥t] and P states that
there are at most (j − t)dt−1 choices for those zt such that there is a peripheral path of length t
between z0 and zt that intersects P in some vertex other than z0. So consider the set Y ⊆ At \{z0}
such that y is connected to z0 by a peripheral path Py of length t that intersects P only in z0 for
all y ∈ Y . Then every vertex y ∈ Y is j-implantable as certified by the path P concatenated with
Py. This means that no choice for zt in Y is possible, and so the number of pairs (z0, zt) in this
setting is at most (j − t)d2t−1.

Summing over all possible j, the number of choices for (z0, zt) is at most1 +

2(k−κ0)/t∑
i=1

(2κ0 + it− t)

 d2t−1 =
k2 − κ2

0

t
· 2d2t−1 if k > t.

It therefore follows that T ≤ (1 + 2k + 2(k2 − κ2
0)/t) d2t−1, as required.

2.3 Circular constructions

In this section, we describe some constructions based on a natural “circular unfolding” of the
Hamming graph, or of the De Bruijn graph. All operations on indices in this section are performed
modulo t.

All our constructions, of maximum degree d, have the stronger property to have an independent
set U (0) of order Θ(dt), which is a clique in the t-th power of the construction. Then, the set of
edges incident to U (0) forms a clique of cardinality d ·

∣∣U (0)
∣∣ = Θ(dt+1) in the (t + 1)-th power of

the line graph of the construction. So any lower bound which can be derived for the distance-t
chromatic number from our construction also derives the same lower bound multiplied by d for
the distance-(t + 1) chromatic index. In general, there is a strong duality between those two
parameters, though our work illustrates that they are not affected in the same manner by odd
cycles.

We first give basic versions that have weaker girth properties but provide intuition, and we
develop these further later. This first proposition directly implies Proposition 2.1.6(i), and half of
Proposition2.1.6(ii) (only the case t odd).
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(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(0, 1, 1)
(1, 0, 0)
(1, 0, 1)
(1, 1, 0)
(1, 1, 1)

U (0) U (1) U (2) U (0)

Figure 2.3.1: A schematic for the Hamming-type circular construction G2 for t = 3 and d = 4.

Proposition 2.3.1. For all t ≥ 3 and all even d, there exists a d-regular graph G such that
ω(Gt) ≥ dt/2t. Moreover, G is bipartite when t is even, and the odd girth of G is t when t is odd.

Proof. Of course, the t-dimensional De Bruijn graph on d/2 symbols already certifies the first part
of the statement, but we give two other constructions that satisfy the second part of the statement.
For both constructions, the vertex set is V =

⋃t−1
i=0 U

(i) where each U (i) is a copy of [d/2]t, the set
of ordered t-tuples of symbols from [d/2].

A De Bruijn-type construction. We define G1 = (V,E1) as follows. For all i ∈ [t], we join an

element
(
x

(i)
0 , . . . , x

(i)
t−1

)
of U (i) and an element

(
x

(i+1)
0 , . . . , x

(i+1)
t−1

)
of U (i+1) by an edge if the

latter is a left cyclic shift of the former, i.e. if x
(i+1)
j = x

(i)
j+1 for all j ∈ [t− 1] (and x

(i)
0 , x

(i+1)
t−1

are arbitrary from [d/2]).

A Hamming-type construction. We define G2 = (V,E2) as follows. For all i ∈ [t], we join an

element
(
x

(i)
0 , . . . , x

(i)
t−1

)
of U (i) and an element

(
x

(i+1)
0 , . . . , x

(i+1)
t−1

)
of U (i+1) by an edge if the

t-tuples are equal on all coordinates, except maybe the i-th, i.e. if x
(i+1)
j = x

(i)
j for all j 6= i

(and x
(i)
i , x

(i+1)
i are arbitrary from [d/2]).

See Figure 2.3.1 for a schematic of G2.
In both constructions, the maximum degree into U (i+1) from a vertex in U (i) is d/2 and the

same is true from U (i+1) into U (i), so both constructions have maximum degree d overall. In both
constructions, for any pair of elements in U (0) there is a path between them of length at most t, one
that passes through every U (i), either by a sequence of t cyclic shifts or a sequence of t one-symbol
changes. Therefore, the induced subgraphs G1

t[U (0)] and G2
t[U (0)] are both cliques, implying that

χ(G1
t) ≥

∣∣U (0)
∣∣ = dt/2t and similarly for G2. As these constructions are composed of bipartite

graphs connected in sequence around a cycle of length t, G1 and G2 are bipartite when t is even,
and of odd girth t when t is odd. This ends the proof.

Our second objective in this section is to introduce a new graph product applicable only to two
balanced bipartite graphs. We use it to produce two bipartite constructions for χ′t, both of which
settle the case of t even left open in Proposition 2.1.6(ii), and the second of which also treats what
could be interpreted as an edge version of the degree–diameter problem.

Let H1 = (V1 = A1 ∪ B1, E1) and H2 = (V2 = A2 ∪ B2, E2) be two balanced bipartite graphs
with given vertex orderings, i.e. A1 = (a1

i )i∈[n1] , B1 = (b1
i )i∈[n1] , A2 = (a2

i )i∈[n2] , B2 = (b2
i )i∈[n2] for
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Figure 2.3.2: An illustration of the balanced bipartite product.

some positive integers n1, n2. We define the balanced bipartite product H1 ./ H2 of H1 and H2 as
the graph with vertex and edge sets defined as follows:

V (H1 ./ H2) := (A1 × A2) ∪ (B1 ×B2), and

E(H1 ./ H2) :=
{

(a1
i , a

2)(b1
i , b

2)
∣∣ i ∈ [n1], a2b2 ∈ E2

}
∪
{

(a1, a2
j)(b

1, b2
j)
∣∣ j ∈ [n2], a1b1 ∈ E1

}
.

See Figure 2.3.2 for an example of this product.

Usually the given vertex orderings will be of either of the following types. We say that a
labelling A = (ai)i∈[n], B = (bi)i∈[n] of H = (V = A∪B,E) is a matching ordering of H if aibi ∈ E
for all i ∈ [n]. We say it is a comatching ordering if aibi /∈ E for all i ∈ [n]. Note by Hall’s theorem
that every non-empty regular balanced bipartite graph admits a matching ordering, while every
non-complete one admits a comatching ordering.

Let us now give some properties of this product relevant to our problem, especially concerning
its degree and distance properties. The first of these propositions follow easily from the definition.

Proposition 2.3.2. Let H1 and H2 be two balanced bipartite graphs that have part sizes n1 and
n2, respectively, and are regular of degrees d1 and d2, respectively, for some positive integers
n1, n2, d1, d2. Suppose H1, H2 are given in either matching or comatching ordering. Then H1 ./ H2

is a regular balanced bipartite graph with parts AH1./H2 = A1 ×A2 and BH1./H2 = B1 ×B2 each of
size n1n2. If both are in matching ordering, then H1 ./ H2 has degree d1 + d2− 1, otherwise it has
degree d1 + d2.

Proposition 2.3.3. Let H1 = (V1 = A1 ∪ B1, E1) and H2 = (V2 = A2 ∪ B2, E2) be two regular
balanced bipartite graphs.

(i) Suppose that for every a1, a′1 ∈ X1 ⊆ A1 there is a t1-path between a1 and a′1 in H1 (for
some t1 even). Suppose that for every a2, a′2 ∈ X2 ⊆ A2 there is a t2-path between a2 and a′2

in H2 (for some t2 even). Then for every (a1, a2), (a′1, a′2) ∈ X1 ×X2 ⊆ AH1./H2, there is a
(t1 + t2)-path between (a1, a2) and (a′1, a′2) in H1 ./ H2.

(ii) Suppose that for every a1, a′1 ∈ X1 ⊆ A1 there is a t1-path between a1 and a′1 in H1 (for
some t1 even). Suppose that for every a2 ∈ X2 ⊆ A2 and b2 ∈ Y2 ⊆ B2 there is a t2-path
between a2 and b2 in H2 (for some t2 odd). Then for every (a1, a2) ∈ X1 × X2 ⊆ AH1./H2

and (b1, b2) ∈ Y1 × Y2 ⊆ BH1./H2 where Y1 = {b1
i | a1

i ∈ X1}, there is a (t1 + t2)-path between
(a1, a2) and (b1, b2) in H1 ./ H2.
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Proof. We only show part (ii), as the other part is established in the same manner. Let (a1, a2) ∈
X1×X2 and (b1, b2) ∈ Y1×Y2. Using the distance assumption on H1, let a1

i0
, b1
i1
, a1

i2
, · · · , b1

it1−1
, a1

it1

be a t1-path in H1 between a1 = a1
i0

and a1
it1

, where it1 is such that b1 = b1
it1

. Using the distance

assumption on H2, let a2
j0
b2
j1
a2
j2
· · · a2

jt2−1
b2
jt2

be a t2-path in H2 between a2 = a2
j0

and b2 = b2
jt2

.

The following (t1 + t2)-path between (a1, a2) and (b1, b2) in H1 ./ H2 traverses using one of the
coordinates, then the other:

(a1, a2) = (a1
i0
, a2

j0
)(b1

i1
, b2
j0

)(a1
i2
, a2

j0
) · · · (b1

it1−1
, b2
j0

)(a1
it1
, a2

j0
)

(b1
it1
, b2
j1

)(a1
it1
, a2

j2
) · · · (a1

it1
, b2
jt2−1

)(b1
it1
, b2
jt2

) = (b1, b2).

We use the balanced bipartite product to show that no version of Theorem 2.1.4 may hold for χ′t.
In combination with the trivial bound χ′t(G) = O(dt) if ∆(G) ≤ d, we deduce Proposition 2.1.6(ii)
from Proposition 2.3.1, the following result and the fact that χ′2(Kd,d) = d2.

Proposition 2.3.4. Fix t ≥ 4 even. For every d ≥ 2 with d ≡ 0 (mod 2(t − 2)), there exists a
d-regular bipartite graph G with χ′t(G) ≥ dt/(et2t−1).

Proof. Let t1 = t − 2 and d1 = (t1 − 1)d/t1. Let G1 = (V1, E1) be the construction promised by
Proposition 2.3.1 for d1 and t1. Since G1 is bipartite, we can write V1 = A1 ∪B1 where

A1 =
⋃
i∈[t1]
i even

U (i) and B1 =
⋃
j∈[t1]
j odd

U (j).

This is a d1-regular balanced bipartite graph, and for every a1, a
′
1 ∈ U (0) ⊆ A1 there exists a t1-path

between a1 and a′1. Moreover, it is possible to label A1 and B1 so that the first
∣∣U (0)

∣∣ vertices of

A1 are the ones of U (0), and the first
∣∣U (1)

∣∣ of B1 are those of U (1). We may also ensure that this
labelling is in comatching ordering.

Let t2 = 1 and d2 = d− d1 = d/t1. Let G2 = (V2 = A2 ∪ B2, E2) = Kd2,d2 . This is a d2-regular
balanced bipartite graph, and for every a2 ∈ A2, b2 ∈ B2, there exists a t2-path between a2 and b2.
Trivially any labelling of A2 and B2 gives rise to a matching ordering.

Let G = G1 ./ G2, X = U (0) × A2 and Y = U (1) × B2. Now G is a d-regular bipartite graph
by Proposition 2.3.2, and by Proposition 2.3.3 for every (a1, a2) ∈ X and (b1, b2) ∈ Y , there exists
a (t− 1)-path between (a1, a2) and (b1, b2). Thus the edges of G that span X × Y induce a clique
in (L(G))t. The number of such edges is (since t > 3) at least(

d1

2

)t1
d2

(
d1

2
+ d2

)
=

(
1− 1

t− 2

)t−2
(t− 1)dt

(t− 3)22t−1
≥ dt

et2t−1
.

Alternatively, Proposition 2.1.6(ii) follows from the following result, albeit at the expense of a
worse dependency on t in the multiplicative factor. For t ≥ 2, we can take a (t−1)-th power of the
product operation on the complete bipartite graph to produce a bipartite graph G of maximum
degree d with Ω(dt) edges such that (L(G))t is a clique.

Proposition 2.3.5. Fix t ≥ 2. For every d ≥ 2 with d ≡ 1 (mod t − 1), there exists a d-regular

bipartite graph G = (V,E) with |E| = d ·
(
d−1
t−1

+ 1
)t−1

and χ′t(G) = |E|.
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Proof. Let d′ = (d − 1)/(t − 1) + 1 and G = Kd′,d′
./ t−1, the (t − 1)-th power of Kd′,d′ under the

product ./, where the factors are always taken in matching ordering. By Proposition 2.3.2, G is a
d-regular bipartite graph and has d · d′t−1 edges. By Proposition 2.3.3, there is a path of length at
most t − 1 between every pair of vertices in the same part if t − 1 is even, or in different parts if
t− 1 is odd. It follows that (L(G))t is a clique.

We now show how to use the Hamming-type construction of Proposition 2.3.1 in a slightly
altered way and obtain a construction of maximum degree d and optimal odd girth, still reaching
the Θ(dt) bound.

Proposition 2.3.6. For every odd t ≥ 3 and d such that 4 | d + 2, there exists a graph G of
maximum degree d such that ω(Gt) ≥ (d+ 2)t/4t, and go(G) = 3t.

Proof. Let t ≥ 3 be an odd integer, and k ≥ 1 be any integer. We define G = (V,E) as follows.
The vertex set is

V =
t−1⋃
i=1

U (i) ∪
t−2⋃
i=0

V (i),

where each V (i) is a copy of [k]t, the set of ordered t-tuples of symbols from [k], and each U (i) is
the set {(

u
(i)
0 , . . . , u

(i)
t−1

) ∣∣∣ ∀j ∈ [t], u
(i)
j ∈ [k] and u

(i)
0 6= u

(i)
t−1

}
.

Given a fixed x ∈ [k], the subgraph induced by the vertices in
⋃
i∈[t−1] V

(i) whose last coordinate
is equal to x is a copy of the Hamming-type construction of Proposition 2.3.1 of order t− 1. Since
t− 1 is even, this is a 2k-regular (or (2k− 1)-regular if t = 3) bipartite graph. From the properties
of the Hamming-type construction, we infer that there is a path of length t − 1 traversing each
V (i) which links any pair of vertices in V (0) with a common last coordinate.

By writing U (0) for V (0), we now define the edge set of the graph induced by the vertices in⋃
i∈[t] U

(i) as follows:

∀i ∈ [t− 1], E ∩
(
U (i) × U (i+1)

)
:=

{(
u

(i)
j

)
j∈[t]

(
u

(i+1)
j

)
j∈[t]

∣∣∣∣ ∀j 6= i, u
(i)
j = u

(i+1)
j

}
, and

E ∩
(
U (t−1) × U (0)

)
:=

{(
u

(t−1)
j

)
j∈[t]

(
u

(0)
j

)
j∈[t]

∣∣∣∣ u(0)
t−1 = u

(t−1)
0 and ∀1 ≤ j ≤ t− 2, u

(0)
j = u

(t−1)
j

}
.

The subgraph induced by the vertices in
⋃
i∈[t] U

(i) is of maximum degree 2k, and there is a

path of length t traversing each U (i) which links any pair of vertices in U (0) with a different last

coordinate. Namely, a path between
(
x

(0)
0 , . . . , x

(0)
t−1

)
∈ U (0) and

(
y

(0)
0 , . . . , y

(0)
t−1

)
∈ U (0) where

x
(0)
t−1 6= y

(0)
t−1 can be induced by the vertices

(
z

(i)
0 , . . . , z

(i)
t−1

)
∈ U (i) for every 1 ≤ i ≤ t− 1, where

∀1 ≤ j < i ≤ t− 1, z
(i)
j = y

(0)
j ,

∀1 ≤ i ≤ j ≤ t− 1, z
(i)
j = x

(0)
j ,

∀1 ≤ i ≤ t− 1, z
(i)
0 = y

(0)
t−1.

For every 1 ≤ i ≤ t− 1, the vertex
(
z

(i)
0 , . . . , z

(i)
t−1

)
∈ U (i) satisfies z

(i)
0 = y

(0)
t−1 6= x

(0)
t−1 = z

(i)
t−1, which

confirms that it belongs to U (i).
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It holds that U (0) = V (0) is a clique in Gt, of order kt. On the other hand, G is a graph of
maximum degree 4k − 2 (or 4k − 3 in the case t = 3), and this degree is attained only by the
vertices in U (0) — all the other vertices are of maximum degree 2k. We now claim that G contains
no odd cycle of length less than 3t. First note that the graph obtained by removing the edges
between two consecutive parts U (i) and U (i+1) is bipartite, so an odd cycle must contain at least
one edge from U (i) × U (i+1) for every i ∈ [t].

Let C be an odd cycle in G, and let P0 be a maximal path of C which contains no edge from

U (t−1)×U (0). Let us denote x(0) =
(
x

(0)
0 , . . . , x

(0)
t−1

)
∈ U (0) and x(t−1) =

(
x

(t−1)
0 , . . . , x

(t−1)
t−1

)
∈ U (t−1)

the extremities of P0, and let y(0) =
(
y

(0)
0 , . . . , y

(0)
t−1

)
∈ U (0) be the vertex following x(t−1) in C. By

construction, we know that x
(0)
t−1 = x

(t−1)
t−1 , since the only edges linking two vertices with a different

(t − 1)-th coordinate are the ones from U (t−1) × U (0). Moreover, since x(t−1)y(0) is an edge in
G
[
U (t−1), U (0)

]
, we know by construction that

∀1 ≤ j ≤ t− 2, y
(0)
j = x

(t−1)
j , and

y
(0)
t−1 = x

(t−1)
0 6= x

(t−1)
t−1 .

So we conclude that x
(0)
t−1 6= y

(0)
t−1. Let P1 = C \

(
P0 + y(0)

)
; this is a path between x(0) and y(0), two

vertices of U (0) which differ in their last coordinate. In particular, P1 must intersect G
[
U (t−1), U (0)

]
.

Let us assume that the winding number of the cycle C1 obtained by closing P1 with respect to the
cycle U (0)U (1) . . . U (t−1)U (0) is 0. If we orient the path P1 from x(0) to y(0), each time P1 traverses
the graph G

[
U (t−1), U (0)

]
(from U (0) to U (t−1)), it does not intersect U (0) again before traversing it

back (from U (t−1) to U (0)). At each traversal from U (0) to U (t−1), the (t− 1)-th coordinate of the
current vertex is copied into the 0-th coordinate of the next one. At the next traversal, from U (t−1)

to U (0), the (t − 1)-th coordinate of the current vertex is changed back to the value of its 0-th
coordinate in the next one. It turns out that the 0-th coordinate has remained unchanged since
the previous traversal, since the subpath linking those two traversals is disjoint from U (0), and
traversing U (0) is a necessary condition in order to change the 0-th coordinate. As a consequence,
after each pair of traversals of G

[
U (t−1), U (0)

]
, the last coordinate of the current vertex in P1 is

always x
(0)
t−1 6= y

(0)
t−1. This is a contradiction, so the winding number of C1 is at least 1, and hence

the winding number of C is at least 2. Finally, since C is an odd cycle, it must have an odd winding
number. Therefore, the winding number of C is at least 3, which ensures that |C| ≥ 3t.

Remark 2.3.1. In the construction described in the proof of Proposition 2.3.6, the condition for
a vertex in V (0) and a vertex in V (1) to share an edge is exactly the same as between U (0) and
U (1). It is therefore possible to identify the vertices identically labelled in V (1) and U (1), in such a
way that the vertices in U (0) and U (1) are now of degree at most 3k − 1 and 3k instead of 4k − 2
and 2k respectively. The maximum degree of the construction obtained after this identification is
d = 3k, and its t-th power contains a clique of size dt/3t. Moreover, if t ≥ 5, the odd girth of the
construction remains 3t.

Finally, if t = 3 and k is a prime power, we can replace the subgraph of G induced by V (0) and
V (1) with k disjoint copies of the incidence graph of a projective plane of order k (described in the
next section). By doing so, new vertices are added to V (0) and V (1) — exactly k(k+ 1) in each —
which we do not take into consideration in U (0). This modification yields a graph of odd girth 3t,
maximum degree d = 3k − 1, and such that U (0) induces a clique of size (d + 1)3/33 in its third
power.
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Figure 2.3.3: The construction in the proof of Proposition 2.3.6 when k = 2 and t = 3.

2.4 Constructions of higher girth

To proceed further with the circular constructions of Proposition 2.3.1, and obtain construc-
tions with higher girth, we certainly have to handle the (many) cycles of length 4 that span
only two consecutive parts U (i) and U (i+1). We do this essentially by substituting a subsegment
U (i), U (i+1), . . . , U (i+k) with a sparse bipartite structure having good distance properties. Some
of the most efficient such sparse structures arise from finite geometries, generalised polygons in
particular. We base our substitution operation on these structures, and therefore find it convenient
to encapsulate the properties most relevant to us in the following definition.
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We say a balanced bipartite graph H = (V = A ∪ B,E) with parts A and B, |A| = |B|, is a
good conduit (between A and B) with parameters (τ,∆, γ, c) if it has girth γ, it is regular of degree
∆, there is a path of length at most τ between any a ∈ A and any b ∈ B, and moreover |A| (and
so also |B|) is of maximum possible order Θ(∆τ ) such that |A| ≥ c∆τ .

The following good conduits are useful in our constructions, because of their relatively high
girth. The balanced complete bipartite graph K∆,∆ is a good conduit with parameters (1,∆, 4, 1).
Let q be a prime power. The point-line incidence graph Qq of a symplectic quadrangle with pa-
rameters (q, q) is a good conduit with parameters (3, q+1, 8, 1). The point-line incidence graph Hq

of a split Cayley hexagon with parameters (q, q) is a good conduit with parameters (5, q+ 1, 12, 1).
We have intentionally made specific classical choices of generalised polygons here, cf. [98], partly
because we know they are defined for all prime powers q and partly for symmetry considerations
described later. We remark that no generalised octagon with parameters (q, q) exists and no
generalised n-gons for any other even value of n exist [51].

We are now prepared to present the main construction of the section. This is a generalisation
of G2. (It is possible to generalise G1 in a similar way.)

Theorem 2.4.1. Let t =
∑λ−1

i=0 τi for some positive odd integers τi and λ ≥ 2. Let d be even.
Suppose that for every i there is a good conduit Hi with parameters (τi, d/2, γi, ci). Then there is
a graph G of maximum degree d such that

ω
(
Gt
)
≥ dt

2t
·
λ−1∏
i=0

ci, and

girth(G) ≥ min
{
λ, 8,min

i
γi

}
.

Moreover, G is bipartite if and only if t is even.

After the proof, we show how to modify the construction in certain cases to mimic the inclusion
of good conduits with τ parameter equal to 2 (note that good conduits with even τ are precluded
from the definition), to increase the girth of G, or to improve the bound on χ(Gt).

Proof of Theorem 2.4.1. For every i, let Hi = (Vi = Ai∪Bi, Ei) be the assumed good conduit with
parameters (τi, d/2, γi, ci). Write Ai = {ai1, . . . , aini} and Bi = {bi1, . . . , bini}. By the definition of
Hi, ni ≥ cid

τi/2τi .
In this proof, the operations on indices are performed modulo λ. We define G = (V,E)

as follows. The vertex set is V =
⋃
i∈[λ] U

(i) where each U (i) is a copy of
∏λ−1

j=0 [nj], the set of

ordered λ-tuples whose jth coordinate is a symbol from [nj]. For all i ∈ [λ], we join an element(
x

(i)
0 , . . . , x

(i)
λ−1

)
of U (i) and an element

(
x

(i+1)
0 , . . . , x

(i+1)
λ−1

)
of U (i+1) by an edge only if the λ-tuples

are equal on all coordinates except maybe the i-th, in which case we use Hi and its ordering as

a template for adjacency. More precisely, join
(
x

(i)
0 , . . . , x

(i)
λ−1

)
and

(
x

(i+1)
0 , . . . , x

(i+1)
λ−1

)
by an edge

in G if x
(i)
j = x

(i+1)
j for all j 6= i and there is an edge in Hi joining ai

x
(i)
i

and bi
x

(i+1)
i

. Clearly G is

bipartite if and only if λ is even, which holds if and only if t is even.
Since Hi has maximum degree d/2, the degree into U (i+1) from a vertex in U (i) is at most d/2

(with respect to the edges added between U (i) and U (i+1)) and the same is true from U (i+1) into
U (i), so overall G has maximum degree d. Between any pair of elements in U (0), there is a path of
length at most t =

∑λ−1
i=0 τi passing through every U (i), which changes the symbol at coordinate
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i via a path of length at most τi in the subgraph induced by U (i) and U (i+1). It follows that the
induced subgraph Gt

[
U (0)

]
is a clique, of size

∣∣U (0)
∣∣ =

λ−1∏
i=0

ni ≥
λ−1∏
i=0

ci ·
dτi

2τi
=
dt

2t
·
λ−1∏
i=0

ci.

All that remains is to establish the girth of G. For the statement we essentially only need to con-
sider cycles of length 7 or less, whose winding number with respect to the cycle U (0) · · ·U (λ−1)U (0)

is 0. Such cycles are of even length, so we only need to consider lengths 4 and 6. We do not
need to consider the cycles that only go back and forth between U (i) and U (i+1) (only along the
edges added between U (i) and U (i+1)), for such cycles are accounted for by the mini γi term. So,
for cycles of length 4 of winding number 0, without loss of generality we need only consider one
that proceeds in order through U (0), U (1), U (2), and then back through U (1) to U (0), written as
u(0)u(1)u(2)v(1)u(0). By construction, the λ-tuples u(0), u(1), v(1) share all but their zeroth coordinate
symbols and the tuples u(2), u(1), v(1) share all but their first coordinate; however, this implies that
u(1) and v(1) are the same tuple in U (1), a contradiction. For cycles of length 6 that, say, proceed
in order through U (0), U (1), U (2), U (3) and back, we argue in a similar fashion as for length 4 to
obtain a contradiction. The remaining case (for winding number 0) is a cycle of length 6 that is,
without loss of generality, of the form u(0)u(1)u(2)v(1)v(2)w(1)u(0). By construction, the tuples u(0),
u(1), w(1) share all but their zeroth coordinate symbols and the tuples v(2), v(1), w(1) share all but
their first coordinate as do u(2), u(1), v(1); however, this implies that u(1) and w(1) are the same
tuple in U (1), a contradiction. This concludes our determination of the girth of G.

We remark that cycles of length 8 may well occur, for instance when the same good conduit H is
used two times consecutively. In particular, supposingH is used from U (0) to U (1) to U (2) and a1b2a3

and b4a5b6 are two 2-paths inH, then (4, 1, . . .)(1), (4, 2, . . .)(2), (4, 3, . . .)(1), (5, 3, . . .)(0), (6, 3, . . .)(1),
(6, 2, . . .)(2), (6, 1, . . .)(1), (5, 1, . . .)(0), (4, 1, . . .)(1) represents an 8-cycle in the construction.

In two of the small values for t (namely, 4 or 7), we cannot apply the construction of Theo-
rem 2.4.1 without a modification. The intuition is to include another sparse structure with good
distance properties, that is, the point-line incidence graph Pq of the projective plane PG(2, q), for
q a prime power. This is a bipartite graph (V = A ∪ B,E) of girth 6, that is regular of degree
q+ 1, has a 2-path between a and a′ for any a, a′ ∈ A (and similarly a 2-path between b and b′ for
any b, b′ ∈ B), and has |A| = |B| = q2 + q + 1. The graph Pd−1 certifies χ2(d, 6) ≥ d(d− 1) + 1 if
d−1 is a prime power; moreover, since the gap between two successive primes p and p′ is o(p) [61],
the inequality χ2(d, 6) ≥ (1− o(1))d2 holds for all d as d→∞.

The graph Pq has properties similar to what we might require for a good conduit having
parameter τ = 2, except that it connects vertices in the same part. One solution to this parity
issue is to “unfold a mirror of Pq”, that is, add a disjoint copy of one of its parts with the same
adjacencies as the original, so that the conduit is between the vertices of two copies of the same
part. See Figure 2.4.1 for an illustration of P2 together with its mirror, denoted by −P2.

Directly, however, this creates cycles of length 4 (from vertices of degree 2), so we need to
segregate the embedding of Pq and its mirror (i.e. Pq with A and B switched). More precisely,
suppose that we want to use Pq as a template for the edges between U (0) and U (1) (as in the
construction of G in Theorem 2.4.1). For this, we change symbols (chosen from [q2 + q+ 1]) at the
0-th coordinate in one step according to Pq between U (0) and U (1), and change the 0-th coordinate
in a second step according to the mirror of Pq but later in the cycle, say by adding a new part
U ′(0) after U (2) in the cycle and adding edges between U (2) and U ′(0) according to the mirror of
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Figure 2.4.1: An illustration of P2 together with its mirror.

Pq. Although this adds one more part to the cycle of U (j)s, it avoids cycles in G of length 4 and
appropriately mimics the distance properties of a good conduit with parameter τ = 2. We can
also interleave when we want to embed Pq and its mirror for two or three coordinates.

In all, the girth we obtain for this modification of Theorem 2.4.1 satisfies girth(G) ≥ min{λ+
ι, 6,mini γi}, where ι = # {i | τi = 2} ≥ 1, provided that λ ≥ 3 if ι = 1.

For t ≥ 6, it is possible to improve on the construction in Theorem 2.4.1 either in terms of
the girth of G or ω(Gt) by applying a similar modification as above but instead to good conduits.
In particular, we can “unfold” Qq or Hq into three copies (one of which is mirrored), or possibly
five copies (two of which are mirrored) in the case of Hq, and distribute the embeddings of these
copies around the cycle, doing this for all coordinates. By unfolding into an odd number (≤ τ)
of parts, the distance properties of the construction are unhindered. If these embeddings are
interleaved so that no two embeddings of the same coordinate are at distance at most 1 in the
cycle U (0)U (1) · · ·U (λ)U (0), then the same analysis for girth at the end of the proof of Theorem 2.4.1
applies. If they are interleaved so that no two embeddings of the same coordinate are at distance
0, then cycles of length 4 do not occur but cycles of length 6 may well occur.

Furthermore, when all of the coordinates are unfolded into the same number (three or five)
of copies and these are distributed evenly so that each segment of length λ contains exactly one
embedding for each coordinate, and the good conduits satisfy a symmetry condition (self-duality)
that we describe formally in Section 2.5, then U (0) ∪U (λ) ∪U (2λ) ∪ · · · induces a clique in the t-th
power, increasing the bound on ω(Gt) (by a factor 3 or 5).

The above modifications do not affect the parity of the main cycle, so we still have that
the construction is bipartite if and only if t is even. We shall describe a few further special
improvements upon Theorem 2.4.1 within the proof of Theorem 2.1.9.

2.5 Distance-t cliques from good conduits

Good conduits of parameters (τ,∆, γ, c) are themselves very nearly cliques in the τ th power and
indeed there are two simple ways to modify them to create such cliques. This yields better bounds
for χtg(d) in a few situations when t ∈ {3, 5}.

The first idea is to contract a perfect matching, thereby merging the parts.

Proposition 2.5.1. Let H be a good conduit of parameters (τ,∆, γ, c) and let A = (ai)i∈[n], B =
(bi)i∈[n] be a matching ordering of H. The graph µ(H), which we call the matching contraction of
H, formed from H by contracting every edge aibi, i ∈ [n] and ignoring any duplicate edges satisfies
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the following properties:

girth(µ(H)) ≥ γ

2
,

∆(µ(H)) ≤ 2(∆− 1),

n(µ(H)) ≥ c∆τ ,

µ(H)τ ≥ is a clique.

Proof. The statements about the maximum degree and number of vertices are trivial to check.
That every pair of vertices is joined by a τ -path follows from the distance properties of H as
a good conduit. Let {v1, . . . , vn} be an ordering of the vertices such that vi corresponds to the
contracted edge aibi for every i ∈ {1, . . . , n}. For the girth, suppose C = vi0vi1 · · · vi`vi0 is a cycle
of length ` in µ(H). Then, for every j ∈ [`+1], either aijbij+1

or aij+1
bij is an edge of H. Moreover,

every aijbij is an edge of H, so by also including at most ` such edges, we obtain a cycle of length
at most 2` in H. So girth(H) ≤ 2 girth(µ(H)), as required.

The second idea is similar to the first, when we have the additional property that the good conduit
is symmetric. More precisely, we say a good conduit between A and B is self-dual if there is a
bijection σ : A → B such that the mapping for which every element a ∈ A is mapped to σ(a)
and every element b ∈ B is mapped to σ−1(b) is an automorphism of the graph. In other words,
a self-dual good conduit has an embedding such that it is isomorphic to its mirror. Note that
this corresponds to the notion of self-duality in generalised polygons, so every self-dual generalised
polygon gives rise to a self-dual good conduit. It is known that Qq, resp. Hq, is self-dual when q
is a power of 2, resp. of 3, cf. [98].

Proposition 2.5.2. Let H be a self-dual good conduit of parameters (τ,∆, γ, c) for τ ≥ 3, and
let A = (ai)i∈[n], B = (bi)i∈[n] be an ordering of H such that σ(ai) = bi for every i ≤ n, where σ
is an automorphism certifying the self-duality of H. The graph µσ(H), which we call the self-dual
contraction of H, obtained by contracting every pair aibi, i ∈ [n] and ignoring any duplicate edges
satisfies the following properties:

ge(µσ(G)) = γ,

go(µσ(G)) = 2
⌈γ

4

⌉
+ 1,

∆(µσ(G)) ≤ ∆,

n(µσ(G)) ≥ c∆τ ,

µσ(G)τ is a clique.

Proof. The statements about the number of vertices and µ(H)t hold for the same reason as in
Proposition 2.5.1. The degree of µ(H) does not increase because the merged neighbourhood after
contracting each pair are symmetric. For the girth statement, suppose C = vi0vi1 · · · vi`vi0 is a
cycle of length ` in µ(H). Then, for every j ∈ [` + 1], both aijbij+1

and bijaij+1
are an edge of H,

by self-duality. As a consequence, C` ×K2 is a subgraph of H. If ` is even, this is C` ∪C`, and so
in particular ` ≥ γ, while if ` is odd, this is C2`, and so in particular ` ≥ γ/2. The smallest odd
integer greater or equal to γ/2 is 2 dγ/4e+ 1.
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2.6 Summary

Let us tie things together for Theorem 2.1.9 before proposing further possibilities.

Proof of Theorem 2.1.9. Table 2.2 explicitly indicates which construction from Section 2.3 or 2.5
is used in each lower bound for χt(d, g) listed in Theorem 2.1.9. In the table, we have used the
following notation. The largest prime power not exceeding d/2−1 is denoted q, so that 2q+ 2 ∼ d
as d→∞. The inequalities in rows involving q hold for all d as d→∞ since the gap between two
successive primes p and p′ is o(p) [61]. The mirror of a graph G is denoted by −G. We have written
(G0

α0 , . . . , Gλ−1
αλ−1) for the circular construction as described in Section 2.3, with the adjacencies

between U (i) and U (i+1) defined according to Gi along the αi-th coordinate. Bracketed factors 3
and 5 in the lefthand column require self-duality and are not necessarily valid for all values of d
as d→∞, as we describe below.

In the row for t = 4 and girth 6 we use a subgraph of the circular construction. It has vertex
set U (0) ∪ U (1) ∪ U (2), with the edges between U (0) and U (1) embedded according to Pq along the
zeroth coordinate (as in the circular construction), and edges between U (1) and U (2) embedded
according to Pq along the first coordinate. There are no edges between U (0) and U (2). By the
same arguments used for the circular construction, we conclude that the girth of the graph is 6.
Moreover, the distance properties of Pq ensure that U (1) induces a clique in the fourth power.

In the row for t = 4 and girth 4, we have an additional factor 2, which is justified with the
observation that U (0)∪U (2) induces a clique in the fourth power. This holds similarly for U (0)∪U (1)

in the row for t = 7.
For the third-to-last row, it is easily checked that, if t = 9 or t ≥ 11, then t is expressible

as a sum of at least three terms in {3, 5}, so that the circular construction as per Theorem 2.4.1
need only be composed using Qq’s and Hq’s. Then, as described at the end of Section 2.3, we can
unfold each coordinate into three copies, distributed evenly around the cycle, to achieve a girth
8 construction. Optionally, if we use Qq2 and Hq3 , where q2 is a power of 2 and q3 is a power of
3 , then the use of self-dual embeddings ensures that we can freely change direction around the
main cycle so that U (0) ∪ U (λ) ∪ U (2λ) induces a clique in the t-th power. By choosing q2 and q3

of similar magnitude (say, by using arbitrarily fine rational approximations of log2 3), we see that
the factor 3 improvement in the inequality holds for infinitely many d. This also explains the girth
6 constructions for t = 6 and t = 8. A similar argument, where we instead unfold each coordinate
into five copies, applies for the last two rows.

Our work is a first systematic attempt at the problem of Alon and Mohar, although their
conjecture — which says for every positive t there is a critical girth gt such that χt(d, gt) = Θ(dt)
and χt(d, gt + 1) = Θ(dt/ ln d) — remains wide open. Because of the reliance upon incidence
structures, it seems unlikely that our methods or similar ones could produce constructions of girth
higher than 12 or 16. We suspect though that gt exists and is linear in t.

Another interesting problem: what is the smallest possible value of the stability number α(Gt)
of Gt, taken over all graphs G of maximum degree at most d and girth at least g? To our knowledge,
this natural extremal problem has not been extensively studied thus far.

2.7 Concluding remarks and open problems

Our goal was to address the question, what is the asymptotically largest value of χt(G) or of χ′t(G)
among graphs G with maximum degree at most d containing no cycle of length `, where d→∞?
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Bound Construction that certifies the bound

χ2(d, 6) & d2 Pq′ , with q′ the largest prime power at most d+ 1

χ3(d, 5) & d3, 2 | d− 1 A self-dual contraction of Qd−1

χ4(d, 4) & 2d4/24
(
Pq0,−Pq0,Pq1,−Pq1

)
χ4(d, 6) & d4/24 A “non-circular”

(
Pq0,Pq1

)
(see proof)

χ5(d, 7) & d5, 3 | d− 1 A self-dual contraction of Hd−1

χ5(d, 6) & d5/25 A matching contraction of Hq′

χ6(d, 6) & (3)d6/26
(
Qq0,Qq1

)
, each coordinate unfolded into three copies

χ7(d, 6) & 2d7/27
(
Qq0,Pq1,−Qq0,−Pq1,Pq2,Qq0,−Pq2

)
χ8(d, 6) & (3)d8/28

(
Qq0,Hq

1
)
, each coordinate unfolded into three copies

χt(d, 8) & (3)dt/2t, t = 9 or t ≥ 11 A circular construction with at least three τj’s
chosen from {3, 5} such that they sum to t,
each coordinate unfolded into three copies

χ10(d, 6) & (5)dt/2t A circular construction composed of two Hq’s,
each coordinate unfolded into five copies

χt(d, 8) & (5)dt/2t, t ≥ 15, 5 | t A circular construction composed only of Hq’s,
each coordinate unfolded into five copies

Table 2.2: A list of constructions used in the proof of Theorem 2.1.9.

The case t = 1 for both parameters and the case t = 2 for χ′t followed from earlier work, but we
showed more generally that for each fixed t this question for both parameters can be settled apart
from a finite number of cases of `. These exceptional cases are a source of mystery. We would be
very interested to learn if the cycle length constraints 2t, 2t+ 2 and 3t in Theorems 2.1.3 and 2.1.4
could be weakened (or not).

More specifically, writing

χt(d, C`) = sup {χt(G) | ∆(G) ≤ d, C` * G} , and

χ′t(d, C`) = sup {χ′t(G) | ∆(G) ≤ d, C` * G} ,

the following questions are natural, even if there is no manifest monotonicity in `.

1. For each t ≥ 1, is there a critical even length `e
t such that for any even `, if ` < `e

t then
χt(d, C`) = Θ(dt), while if ` ≥ `e

t then χt(d, C`) = Θ(dt/ ln d)?

2. For each t ≥ 2, is there a critical even length `′t such that for any even `, if ` < `′t then
χ′t(d, C`) = Θ(dt), while if ` ≥ `′t then χ′t(d, C`) = Θ(dt/ ln d)?

3. For each t ≥ 1 odd, is there a critical odd length `o
t such that for any odd `, if ` < `o

t then
χt(d, C`) = Θ(dt), while if ` ≥ `o

t then χt(d, C`) = Θ(dt/ ln d)?

The combination of Theorem 2.1.4 and Proposition 2.1.7 demonstrates that the third question
has a positive answer, and that

∀t odd, `o
t = 3t.
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We can already give a positive answer to the first and second questions for the values of t for
which there exist projective geometries, namely

`e
1 = `′2 = 4,

`e
2 = `′3 = 6,

`e
3 = `′4 = 8,

`e
5 = `′6 = 12.

It is tempting to conjecture that the pattern `e
t = `′t+1 = 2t+ 2 holds for every value of t, yet the

high dependency of those results on the existence of projective geometries is a major flaw in this
hypothetical conjecture. In this chapter, we showed the desired upper bounds on those critical
lengths.

The above three questions are natural analogues to open questions of Alon and Mohar [8] and
of Kaiser and Kang that ask for a critical girth gt (resp. g′t) for which there is an analogous decrease
in the asymptotic extremal behaviour of the distance-t chromatic number (resp. index). If these
critical values all exist, it would be natural to think that gt = min{`e

t , `
o
t} and g′t = `′t. But there

is limited evidence for the existence questions, let alone this stronger set of assertions. We have
established a lower bound of 8 for these hypothetical critical values, when t ≥ 12, but the odd
critical length is the only one for which we managed to exhibit a general construction certifying
that it should be unbounded as t→∞ .

As mentioned in the introduction, Vu [119] proved that the exclusion of any fixed bipartite graph
is sufficient for a O(d2/ ln d) upper bound on the strong chromatic index of graphs of maximum
degree d. One might wonder, similarly, for each t ≥ 2 is there a natural wider class of graphs than
sufficiently large cycles (of appropriate parity) whose exclusion leads to asymptotically non-trivial
upper bounds on the distance-t chromatic number or index?





Chapter 3

Bipartite induced density

Chapter 1 was the occasion to illustrate the general gap that lies between the largest Hall ratio
of a class of graphs and its largest (fractional) chromatic number. Well, mathematicians — like
nature — abhor a vacuum, and where there is a gap, there is an urge to fill it with new notions.

Somewhere between independent sets and fractional colourings of a graph G lies its bipartite
induced density . Denoted bid(G), it is defined as the maximum average degree over all the induced
bipartite subgraphs of G;

bid(G) := max
H⊆G
χ(H)≤2

ad(H).

Finding a bipartite subgraph of G which is a certificate of bid(G) consists in finding two
independent sets of G, the union of which spans as many edges as possible given its size. On the
other hand, given a proper k-colouring of G, the

(
k
2

)
bipartite graphs induced by any pair of colours

partition E(G). Since every vertex is contained in exactly k − 1 of them, this implies that if G
is of average degree d, then d

k−1
is a convex combination of the average degrees of those induced

bipartite graphs, and thus by the pigeon-hole principle one of them has to be of average degree at
least d

k−1
. We will give a formal proof of a similar result using a fractional colouring.

So we have a parameter which relaxes the notion of fractional colouring with a consideration of
a specific structured subset of edges, which could be seen as an edge version of the independence
number — indeed the independence number relaxes the notion of fractional colouring with a
consideration of a specific structured subset of vertices. What would be of interest would be
to prove the analogue of a conjecture concerning fractional colouring in the setting of bipartite
induced density. In this chapter, we study the analogue of Conjecture 0.2.4 for bipartite induced
density.

The content of this chapter is covered by the submitted articles [26, 31].

3.1 Introduction

Our starting point is a conjecture of Esperet, Kang, and Thomassé, which would be sharp up to
the choice of constant if true.

Conjecture 3.1.1 (Esperet, Kang, and Thomassé [49]). There is a constant C > 0 such that
any triangle-free graph with minimum degree at least d contains a bipartite induced subgraph of
minimum degree at least C ln d.

143
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Although the conjecture is new, it might be difficult. Conjecture 3.1.1 aligns with central challenges
in combinatorics, especially about colourings and independent sets in triangle-free graphs. For ex-
ample, Johansson’s theorem [65] for colouring triangle-free graphs (combined with the pigeonhole
principle) implies Conjecture 3.1.1 for any triangle-free graph with O(d) maximum degree. Simi-
larly, a result of Ajtai, Komlós and Szemerédi [2] about the off-diagonal Ramsey numbers R(3, t)
confirms Conjecture 3.1.1 for any triangle-free graph on n vertices provided d = Ω(n2/3

√
lnn) as

n→∞.
Our main result is a stronger, near optimal version of this last statement.

Theorem 3.1.1. There are constants C1, C2 > 0 such that, for 0 ≤ d ≤ n/2,

• any triangle-free graph on n ≥ 2 vertices with minimum degree at least d contains a bipartite
induced subgraph of minimum degree at least max{C1d

√
lnn/n, d2/(2n)}; and

• provided n/d is large enough, there is a triangle-free graph on between n/2 and n vertices with
minimum degree at least d such that every bipartite induced subgraph has minimum degree at
most dC2d

2/ne lnn.

Thus we observe the following phase transition behaviour: for d there is a critical exponent of n
(namely 1/2) above which we can be assured of bipartite induced minimum degree polynomially
large in n (and below which we cannot). Theorem 3.1.1 resolves Problem 4.1 in [49] up to a loga-
rithmic factor. Our constructions for near optimality are blow-ups of an adaptation of Spencer’s
construction for lower bounds on R(3, t) [112] (see Section 3.3).

Due to a captivating connection between bipartite induced density and fractional colouring [49]
(see Section 3.2 for more details), Theorem 3.1.1 is closely related to the following extremal result.

Theorem 3.1.2. There are constants C1, C2 > 0 such that, for 0 < d ≤ n/2,

• any triangle-free graph on n vertices with minimum degree at least d has fractional chromatic
number at most min{C1

√
n/ lnn, n/d};

• provided n/d is large enough, there is a triangle-free graph on between n/2 and n vertices with
minimum degree at least d and fractional chromatic number at least C2 min{

√
n/ lnn, n/d}.

This bound is basic, but has not appeared in the literature as far as we know. There is equality
in the n/d bound when d = n/2, in which case we must have a complete bipartite graph with
two equal-sized parts. As for the Θ(

√
n/ lnn) bound, it is an interesting problem to sharpen the

asymptotic constants. In Section 3.4, we combine Theorem 1.1.1 (Johansson-Molloy) with the
proof idea in Theorem 3.1.2 to show the following as a first step.

Theorem 3.1.3. As n→∞, any triangle-free graph on n vertices has fractional chromatic number
at most (2 + o(1))

√
n/ lnn.

Note that if one could improve the factor (2 + o(1)) to (
√

2 + o(1)) (which we formally state as a
conjecture below), then it would match the best to date asymptotic upper bound for the Ramsey
numbers R(3, t) due to Shearer [108]. By the final outcome of the triangle-free process [16, 52],
Theorem 3.1.3 is sharp up to a (2

√
2 + o(1)) factor. (The triangle-free process also gives sharpness

up to a constant factor in Theorem 3.1.2.)
Theorem 3.1.1 is not far from optimal, but the best constructions we know so far are almost

regular. As noted above, we already know Conjecture 3.1.1 in the almost regular case. This
motivates the following bound which improves on Theorem 3.1.1 if the graph is irregular. We
prove this in Section 3.6.
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Theorem 3.1.4. Any triangle-free graph on n ≥ 2 vertices with m ≥ 1 edges and w3 (directed)
three-edge walks contains a bipartite induced subgraph of minimum degree at least w3/(4nm).

Observe that w3 ≥ 2md2 if the graph has minimum degree at least d (with equality for d-regular
graphs), and so Theorem 3.1.4 directly implies the d2/(2n) bound. Put another way, Theorem 3.1.4
replaces the squared minimum degree term in the bound of Theorem 3.1.1 by the average over all
edges of the product of the two endpoint degrees.

Theorem 3.1.2 inspires the following question, which is left to further study.

Problem 3.1.5. Given a function d = d(n), letting χ(n, d) denote the largest chromatic number
of a triangle-free graph on n vertices with minimum degree at least d, asymptotically what is
χ(n, d)/min{

√
n/ lnn, n/d} as n→∞?

In a sense, substantial effort has already been devoted to this problem when d is linear in n, in
relation to a problem of Erdős and Simonovits [47] discussed in Section 0.4.2, see e.g. [116, 23]. In
particular, for ε > 0 fixed, the answer is ω(1) if d < (1/3− ε)n while it is O(1) if d > (1/3 + ε)n
or if d = O(

√
n lnn). A result of Lovász [85] (and Theorem 3.1.2) implies that the ratio is always

O(lnn).

Outline of the chapter. This chapter is organized as follows. In Section 3.2 we prove The-
orem 3.1.2, which in turn implies the lower bound of Theorem 3.1.1. In Section 3.3, we use the
Local Lemma to construct a random graph that certifies the upper bound of Theorem 3.1.1. In
the remaining sections we explore generalizations of Theorems 3.1.1 and 3.1.2. In Section 3.4, we
prove Theorem 3.1.3 and we also provide bounds in terms of the number of edges. In Section 3.5,
we go a bit further and extend this analysis to graphs with sparse neighbourhoods. Section 3.6 is
devoted to the proof of Theorem 3.1.4 and related distance-3 results. Finally, in Section 3.7 we
make some concluding remarks concerning the exclusion of an arbitrary subgraph. In particular,
we show how our results generalize to excluding any given cycle as a subgraph.

Note added. Shortly after the content of this chapter was posted to a public preprint repository,
we learned that Matthew Kwan, Shoham Letzter, Benny Sudakov and Tuan Tran [83] indepen-
dently obtained a finer version of Theorem 3.1.1 with different methods. Eventually, they moreover
proved a marginally weaker form of Conjecture 3.1.1, guaranteeing a bipartite induced subgraph
of minimum degree at least C ln d/ ln ln d.

Probabilistic preliminaries. We use a specific form of the Chernoff bound [62, (2.11)] and an
alternative formulation of the Lovász Local Lemma [112, Thm. 1.3].

Theorem 3.1.6. If x ≥ 7np, then

Pr(Bin(n, p) ≥ x) < e−x.

Theorem 3.1.7 (General Local Lemma). Consider a set E = {E1, . . . , En} of (bad) events, and
let Γi ⊆ E \ {Ei} be a subset of events such that Ei is mutually independent of E \ (Γi ∪{Ei}), for
every i. If there exist real numbers y1, . . . , yn > 0 such that for each i,

yiP [Ei] < 1 and ln yi >
∑
Ej∈Γi

yjP [Ej] ,

then the probability that none of the events in E occur is positive.
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3.2 Fractional colouring

Given a graph G = (V,E), we say that a probability distribution P over the independent sets of G
satisfies property Q∗r if P [v ∈ I] ≥ r for every v ∈ V and I taken randomly according to P . Recall
that the fractional chromatic number χf (G) of G is defined as the smallest k such that there is
a probability distribution over the independent sets of G satisfying property Q∗1/k. Here is a link
between fractional colouring and bipartite induced density.

Theorem 3.2.1 (Esperet, Kang, Thomassé, 2019 [49]). Any graph with fractional chromatic num-
ber k and average degree d has a bipartite induced subgraph of average degree at least d/k.

This result first appeared with a stronger condition that the graph is of minimum degree d
rather than of average degree d. Here is the proof of the stronger statement.

Proof of Theorem 3.2.1. Let G be a graph and let P be a probability distribution over the indepen-
dent sets of G with property Q∗1/k. Without loss of generality, we may assume that P [v ∈ I] = 1/k
for every vertex v ∈ V and I a random independent set taken according to P . Let I1 and I2 be two
independent sets taken independently at random according to P . Note that E [|I1|] = E [|I2|] = n/k
by the assumption on P . Moreover, for any edge uv ∈ E(G), the probability that uv is in the
induced subgraph G[I1 ∪ I2] is

P [u ∈ I1]P [v ∈ I2] + P [u ∈ I2]P [v ∈ I1] =
2

k2
.

By linearity of expectation, we have that

E
[
e(G[I1 ∪ I2])−(|I1|+ |I2|)

d

2k

]
=

2e(G)

k2
− nd

k2
= 0.

The probabilistic method guarantees the existence of independent sets I1 and I2 of G such that

e(G[I1 ∪ I2]) ≥ (|I1|+ |I2|)
d

2k
.

So G[I1 ∪ I2] is an induced bipartite subgraph of G, of average degree at least d/k.

There is always a subgraph whose minimum degree is at least half the graph’s average degree.
Thus to obtain the lower bound in Theorem 3.1.1 we only need the upper bound in Theorem 3.1.2.

Proof of Theorem 3.1.2. Let G = (V,E) be a triangle-free graph on n vertices with minimum
degree at least d. Since fractional chromatic number is at most chromatic number, the first
term of the upper bound was already observed by Erdős and Hajnal [45] as a consequence of the
aforementioned result of Ajtai, Komlós and Szemerédi [2] (see Section 3.4). For the second term
of the upper bound, choose I from full neighbourhood sets uniformly over all n such sets. Since G
is triangle-free, I is an independent set. For all v ∈ V ,

P [v ∈ I] =
deg(v)

n
≥ d

n
.

We have shown then that this distribution has property Q∗d/n, as required.
For sharpness, fix ε > 0 and let j be the minimum between n and the least value for which

2
√

(2 + ε/4)j/ ln j ≥ n/d, and consider the final output of the triangle-free process on j vertices.
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This is a triangle-free random graph that was shown, independently, by Bohman and Keevash [16]
and by Fiz Pontiveros, Griffiths and Morris [52], to have minimum degree (1 + o(1))

√
j ln j/2 and

stability number at most (1 + o(1))
√

2j ln j with high probability as j → ∞. For large enough
j (which we can guarantee if n/d is large enough), we may fix a triangle-free graph Ĝ that has
minimum degree at least

√
j ln j/(2 + ε/4) and stability number at most

√
(2 + ε/4)j ln j. Form

a new graph G from Ĝ by replacing each vertex by an independent set of size bn/jc, and adding a
complete bipartite graph between every pair of independent sets that corresponds to an edge in Ĝ.
Observe that G is a triangle-free graph on between n/2 and n vertices with minimum degree at least√
j ln j/(2 + ε/4)bn/jc ≥ d. Moreover, G has stability number at most

√
(2 + ε/4)j ln jbn/jc ≤

2(2 + ε/4)d and so has fractional chromatic number at least (n/2)/(2(2 + ε/4)d) = n/((8 + ε)d),
as desired.

Note that we essentially lost a factor 2 twice due to rounding, which is only an issue when
d = Θ(

√
n lnn). Thus when d = ω(

√
n lnn) the n/d upper bound is in fact correct up to a factor

(2 + o(1)) as n→∞, and so in this case we can take the choice C2 = 1/2 + o(1).
For the other lower bound, recall that the triangle-free process on n vertices yields, with high

probability, a random graph with stability number at most (1 +o(1))
√

2n lnn. Thus the fractional
chromatic number of that graph is at least (1 + o(1))

√
n/(2 lnn).

3.3 Near optimality

As mentioned before, the lower bound in Theorem 3.1.1 follows from Theorem 3.1.2, so it just
remains to prove near sharpness, which is our next task.

Instead of a dense bipartite induced subgraph, we might be satisfied with a dense bipartite
subgraph where we only require that (at least) one of the two parts induces an independent set.
Given G = (V,E), we call an induced subgraph G′ = (V ′, E ′) of G semi-bipartite if it admits a
partition V ′ = V1∪V2 such that V1 is an independent set of G, and we define the degree of a vertex
of G′ with respect to the semi-bipartition as its degree in the bipartite subgraph G[V1, V2] between
V1 and V2 (and so we ignore any edges in V2). A version of Conjecture 3.1.1 where ‘bipartite’ is
replaced by ‘semi-bipartite’ is known [49]. Let us begin by improving on [49, Theorem 3.6] by
providing a version where the minimum degree is replaced with the geometric mean of the degrees,
all the while increasing the leading constant.

Theorem 3.3.1. A triangle-free graph G on n vertices contains a semi-bipartite induced subgraph
of average degree at least (2 + o(1)) 1

n

∑
v∈V (G)

ln deg(v).

In the statement of the theorem and in the proof below, the o(1) term tends to zero as the
geometric mean of the degree sequence of G tends to infinity. The proof uses a result from
Chapter 1, and the method relies on the properties of a random independent set drawn according
to the hard-core model, also defined in Chapter 1.

Proof of Theorem 3.3.1. We find a semi-bipartite induced subgraph of G where one of the parts
is a random independent I from the hard-core model, and the other is V (G) \ I. The number of
edges between the parts is therefore X =

∑
v∈I

deg(v). We write E [X] in two different ways:

E [X] =
∑

v∈V (G)

deg(v)P [v ∈ I] =
∑

v∈V (G)

E [|N(v) ∩ I|] . (3.1)
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The first version is obtained using the linearity of expectation, and the second comes from the
fact that E [|N(v) ∩ I|] =

∑
u∈N(v)

P [u ∈ I] and hence P [u ∈ I] appears deg(u) times in the sum as

required. For any α, β > 0 we have

(α + β)E [X] =
∑

v∈V (G)

(
α deg(v)P [v ∈ I] + βE [|N(v) ∩ I|]

)
,

hence by Lemma 1.4.4,

E [X] ≥
nλ

(
1

n

∑
v∈V (G)

ln deg(v) + ln
α

β
+ ln ln(1 + λ) + 1

)
(

1 +
α

β

)
(1 + λ) ln(1 + λ)

.

Choosing e.g.
α

β
= λ =

n∑
v∈V (G)

ln deg(v)
, we observe that

E [X] ≥ (1 + o(1))
∑

v∈V (G)

ln deg(v).

To complete the proof, note that the bound on E [X] means that there is at least one independent
set I with at least (1 + o(1))

∑
v∈V (G)

ln deg(v) edges from I to its complement. This immediately

means that the average degree of the semi-bipartite subgraph with parts I and V (G) \ I is at least

(2 + o(1))
1

n

∑
v∈V (G)

ln deg(v).

In what follows we give near optimal constructions for Theorem 3.1.1 not only for bipartite
induced density, but also for semi-bipartite induced density. The following result, an adaptation of
work of Spencer [112], is central. It might also be possible to adapt an earlier construction due to
Erdős [43], but it would produce a construction comparable to Theorem 3.1.1. Although we chose
not to pursue it, we suspect that the outcome at the end of the triangle-free process is significantly
better, and optimal up to a constant factor. For this reason, we did not optimise either of the
constants below.

Theorem 3.3.2. There exist constants δ, γ > 0 such that for every large enough n there is a
triangle-free graph on n vertices with minimum degree at least δ

√
n that contains no semi-bipartite

induced subgraph of minimum degree at least γ lnn.

Before proving this, let us see how it implies the second part of Theorem 3.1.1.

Proof of sharpness in Theorem 3.1.1. Let j be the smaller of n and the least value for which 2
√
j ≥

δn/d. Provided j is large enough, we may by Theorem 3.3.2 fix a triangle-free graph Ĝ that has
minimum degree at least δ

√
j that contains no semi-bipartite induced subgraph of minimum degree

at least γ ln j. Consider a new graph G formed from Ĝ by replacing each vertex by an independent
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set of size bn/jc, and adding a complete bipartite graph between every pair of independent sets
that corresponds to an edge in Ĝ. Note that G is a triangle-free graph on between n/2 and n
vertices with minimum degree at least δ

√
jbn/jc ≥ d. Moreover, the largest minimum degree of a

semi-bipartite induced subgraph in G is smaller than γbn/jc ln j ≤ γdδ2d2/(16n)e lnn.

For Theorem 3.3.2 we will need the convenient observation that, if we do not mind constant
factors, it suffices to consider only semi-bipartite induced subgraphs with both parts of equal size.

Proposition 3.3.3 ([49]). Suppose A,B ⊆ G are disjoint with |A| ≥ |B| and satisfy that the
average degree of G[A,B] is d. Then there exists A′ ⊆ A with |A′| = |B| such that the average
degree of G[A′, B] is at least d/2.

Proof of Theorem 3.3.2. For a sufficiently large positive integer n, let p = c1/
√
n and t = c2

√
n lnn

for some fixed c1, c2 > 0. Consider the binomial random graph G(n, p). Fix 0 < α < 1 and β > 0.
The constants c1, c2, α, β will be specified more precisely later in the proof.

With a view to applying the General Local Lemma, let us define four types of (bad) events in
G(n, p).

A For a set of three vertices, it induces a triangle.

B For a set of t vertices, it induces an independent set.

C For a single vertex, it has degree at most (1− α)np.

Di For two disjoint sets of i vertices, the bipartite subgraph induced by the cut between the two
sets has average degree at least β lnn.

Note that by Proposition 3.3.3 and the choice of p, we obtain the desired graph if there is an element
of the probability space G(n, p) for which no event of Types A, B, C, and Di, β lnn ≤ i ≤ t, occur.

Let us write P (∗) for the probability of an event of Type ∗. We have that P (A) = p3 and

P (B) = (1− p)(
t
2) < e−p(

t
2). Note that P (C) = P [Bin(n, p) ≤ (1− α)np] ≤ e−α

2np/2 by a Chernoff
Bound. Since ip ≤ tp ≤ c1c2 lnn, P (Di) = P [Bin(i2, p) ≥ βi lnn] ≤ e−βi lnn by a Chernoff Bound
with a choice of β satisfying

β ≥ 7c1c2. (3.2)

Let us write that each Type ∗ event is mutually independent of all but N(∗, ∗′) events of Type ∗′.
We have that N(A,A) = 3(n− 3) < 3n, N(B,A) =

(
t
2

)
(n− t) +

(
t
3

)
< t2n/2, N(C,A) =

(
n−1

2

)
<

n2/2, and N(Di,A) < i2n. More crudely, we have N(A,B), N(B,B), N(C,B), and N(Di,B) are
all at most

(
n
t

)
< (en/t)t = et ln(en/t); N(A,C), N(B,C), N(C,C), and N(Di,C) are all at most n;

and N(A,Dj), N(B,Dj), N(C,Dj), and N(Di,Dj) are all at most
(
n
2j

)
< (en/2j)2j = e2j ln(en/2j),

Let us write E = {A,B,C}∪{Di | β lnn ≤ i ≤ t}. By the General Local Lemma, we only need
to find, for β lnn ≤ i ≤ t, positive reals Y (A), Y (B), Y (C), and Y (Di) such that the following
inequalities hold:

∀X ∈ E , Y (X)P (X) < 1

∀X ∈ E , lnY (X) >
∑

X′∈E−X

Y (X ′)P (X ′)N(X,X ′)
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The estimates that we derived earlier imply that it instead suffices to find positive reals Y (A),
Y (B), Y (C), and Y (Di) for which the following hold:

Y (A) · p3 < 1;

Y (B) · e−p(
t
2) < 1;

Y (C) · e−
α2np

2 < 1;

∀i, Y (Di) · e−βi lnn < 1;

Z < lnY (A)− Y (A)p3 · 3n;

Z < lnY (B)− Y (A)
p3t2n

2
;

Z < lnY (C)− Y (A)
p3n2

2
; and

∀i, Z < lnY (Di)− Y (A)
p3i2

n
;

where

Z = Y (B)e−p(
t
2)+t ln en

t + Y (C) · e−
α2np

2 · n+
∑
j

Y (Dj)e
−βj lnn+2j ln en

2j .

Let us choose Y (A) = 1 + ε, Y (B) = ec3
√
n(lnn)2

, Y (C) = ec4
√
n, and Y (Di) = ec5i lnn for some fixed

ε, c3, c4, c5 > 0.

We first consider the asymptotic behaviour of the three constituents of Z as n → ∞. For the
first two, we have

Y (B)e−p(
t
2)+t ln en

t = e

(
c3−

c1c
2
2

2
+c2+o(1)

)
√
n(lnn)2

, and

Y (C) · 2e−
α2np

3 n = e

(
c4−α

2c1
2

)
√
n
.

For the third, note since β lnn ≤ j ≤ t that∑
j

Y (Dj)e
−βj lnn+2j ln en

2j ≤
∑
j

e(c5−β+2+o(1))j lnn

≤ e(c5−β+2+o(1))β(lnn)2

.

We may therefore conclude that Z is superpolynomially small in n provided

c3 −
c1c

2
2

2
+ c2 < 0, (3.3)

c4 −
α2c1

2
< 0, and (3.4)

c5 − β + 2 < 0. (3.5)

Of the remaining terms in the inequalities required for the application of the General Local
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Lemma, the critical ones can be seen to be polylogarithmic or greater in magnitude (as n→∞):

lnY (B)− Y (A)
p3t2n

2
=

(
c3 − (1 + ε)

c3
1c

2
2

2
+ o(1)

)√
n(lnn)2;

lnY (C)− Y (A)
p3n2

2
=

(
c4 − (1 + ε)

c3
1

2
+ o(1)

)√
n; and

lnY (Di)− Y (A)
p3i2

n
≥
(
c5 − (1 + ε)c3

1c2

)
i lnn

(where we used i ≤ c2

√
n lnn in the last line).

We therefore also want that

c3 − (1 + ε)
c3

1c
2
2

2
> 0, (3.6)

c4 − (1 + ε)
c3

1

2
> 0, and (3.7)

c5 − (1 + ε)c3
1c2 > 0. (3.8)

It remains only to show that there is some choice of c1, . . . , c5, α, β, ε so that (3.2)–(3.8) are
fulfilled. Note that, whatever the other choices, the inequalities (3.2), (3.5), and (3.8) are satisfied
with a sufficiently large choice of β or of c5. By pairing inequalities (3.3) and (3.6) as well as (3.4)
and (3.7), we need

c2

(c1c2

2
− 1
)
> c3 > (1 + ε)

c3
1c

2
2

2
, and

α2c1

2
> c4 > (1 + ε)

c3
1

2
.

We have that

c2

(c1c2

2
− 1
)
> (1 + ε)

c3
1c

2
2

2
⇐⇒ c2 >

2

c1 − (1 + ε)c3
1

, and

α2c1

2
> (1 + ε)

c3
1

2
⇐⇒ α >

√
1 + ε · c1.

Let us then fix c1 = 1/
√

3. Therefore with a small enough choice of ε > 0 it is possible to choose,
say, c2 = 21/4 and α = 3/4 (< 1 particular) and then take, say, c3 = 0.51 and c4 = 0.97. This
completes the proof.

3.4 Fractional colouring redux

In this section, we make a first step towards optimising the asymptotic constant for the first term
in Theorem 3.1.2. It turns out that this is related to two problems of Erdős and Hajnal [45],
concerning the asymptotic order of the chromatic number of a triangle-free graph with a given
number of vertices or edges. In terms of edges, the correct order upper bound was first shown
by Poljak and Tuza [102]. Matching lower bounds to settle both problems were established as
byproduct to the determination of the asymptotic order of the Ramsey numbers R(3, t) by Kim [79],
cf. [56, 97].
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For completeness we reiterate more precisely the observation of Erdős and Hajnal [45] mentioned
in the proof of Theorem 3.1.2 (see also [63, pp. 124–5] and [79]). An application of Shearer’s lower
bound on the stability number [108] in a greedy colouring procedure bounds the chromatic number
by at most (4 + o(1)) times optimal (as certified by the triangle-free process [16, 52]).

Lemma 3.4.1 (cf. Jensen and Toft [63]). Let G be a class of graphs that is closed under vertex-
deletion. Suppose for some x0 ≥ 2 that there is a continuous, non-decreasing function fG :
[x0,∞) → R+ such that every G′ ∈ G on x ≥ x0 vertices has an independent set of at least
fG (x) vertices. Then every G ∈ G on n ≥ x0 vertices has chromatic number at most

x0 +

n∫
x0

dx

fG (x)
.

Corollary 3.4.1.1. As n → ∞, any triangle-free graph on n vertices has chromatic number at
most (2

√
2 + o(1))

√
n/ lnn.

Proof. Shearer [108] showed that, for any ε > 0, there exists x0 ≥ 2 such that the function
fG (x) = (1/

√
2 − ε)

√
x lnx satisfies the hypothesis of Lemma 3.4.1 for the class G being the

triangle-free graphs. Lemma 3.4.1 yields the desired outcome after an exercise in analysis to show
that

lim
n→∞

n∫
x0

dx√
x lnx√

n/ lnn
= 2.

Is the factor (2 + o(1)) contribution from the above limit truly necessary? We were unable to
address this issue, but Theorem 3.1.3 shows it possible to reduce the bound by a factor (

√
2+o(1))

if we only wish to bound the fractional chromatic number. Note that definitive progress on whether
it is possible to improve by strictly more than a factor (2+o(1)) in Corollary 3.4.1.1, for fractional or
not, either positively or negatively, would likely constitute a major breakthrough in combinatorics.
A factor (2 + o(1)) improvement is indeed plausible, especially for fractional.

Conjecture 3.4.1. As n → ∞, any triangle-free graph on n vertices has fractional chromatic
number at most (

√
2 + o(1))

√
n/ lnn.

Relatedly, in the spirit of [45], we also conjecture the following.

Conjecture 3.4.2. As m → ∞, any triangle-free graph with m edges has fractional chromatic
number at most (24/3 + o(1))m1/3/(lnm)2/3.

Both of the above conjectures hold for regular triangle-free graphs.
Here it seems natural to use Theorem 1.1.1 (Molloy-Johansson). Since it is a much stronger

form of Shearer’s bound, one might wonder if it alone is enough to verify Conjecture 3.4.1. This
does not seem to be the case. We remark however that Theorems 3.1.2 and 1.1.1 together imme-
diately yield Conjectures 3.4.1 and 3.4.2 for regular triangle-free graphs. (Let G be a D-regular
triangle-free graph. If D ≥

√
n lnn/2, then it follows from Theorem 3.1.2; otherwise, it follows

from Theorem 1.1.1.) Moreover, as we will shortly see, an iterated application of Theorem 1.1.1
combined with the simple idea in the proof of Theorem 3.1.2 yields Theorem 3.1.3.
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Recall that we may equivalently define the fractional chromatic number of a graph as the
smallest k such that there is an assignment of measurable subsets of the interval [0, k] (or rather of
any subset of R of measure k) to the vertices such that each vertex is assigned a subset of measure
1 and subsets assigned to adjacent vertices are disjoint.

Proof of Theorem 3.1.3. Fix ε > 0. Without loss of generality, assume ε < 1/2. Let G = (V,E) be
a triangle-free graph on n vertices and let D ≤ n be some positive integer to be specified later in
the proof. We first associate n disjoint intervals of measure 1/D to each of the full neighbourhood
sets (each of which is an independent set), and assign each such interval to its neighbourhood’s
vertices. By independently, arbitrarily de-assigning some (parts) of these intervals, we may assume
each vertex of degree at least D has an assignment of measure exactly 1. On the other hand, the
subgraph of vertices of measure less than 1 has maximum degree less than D. More precisely, let
Vi be the set of vertices of degree exactly i in G, for i < D: this initial partial fractional colouring
gives each vertex of Vi an assignment of measure exactly i/D < 1. We have essentially shown how
it suffices to restrict our attention to G having maximum degree D (by the simple idea in the proof
of Theorem 3.1.2).

For each D1/(1+ε/5) ≤ i < D, let us write Gi for the subgraph of G induced by ∪ij=0Vj. Since
Gi is a triangle-free graph of maximum degree at most i, it follows from Theorem 1.1.1 that Gi

admits a proper colouring ci of its vertices with at most (1 + ε/5)i/ ln i colours, provided i is large
enough (since i ≥ D1/(1+ε/5), i is arbitrarily large if D is.) For each colour class C of ci, we choose
an interval of measure 1/D (that is disjoint from all previously used intervals), and assign it to
each vertex of C.

This extends the initial partial fractional colouring to nearly all of G. If D1/(1+ε/5) ≤ i < D,
then each vertex of Vi has been assigned D − i additional intervals of measure 1/D, resulting in
an assignment of measure 1. Note that, for D large enough, the total measure of the subsets we
have thus used is

n

D
+

1

D

D∑
i=dD1/(1+ε/5)e

(1 + ε/5)i

ln i
≤ n

D
+

(1 + ε/5)2

D lnD

D∑
i=0

i

=
n

D
+

(1 + ε/5)2(D + 1)

2 lnD

≤ n

D
+

(1 + ε/2)D

2 lnD
.

We have extended the initial partial fractional colouring so that every vertex of G has measure
1 apart from those vertices of degree less than D1/(1+ε/5). Since the above bound on the total
measure used is strictly more than D1/(1+ε/5) if D is large enough, we can greedily extend the
partial fractional colouring to all remaining vertices without any additional measure.

It remains to specify D so that we use at most (
√

2 + ε)
√
n/ lnn measure in total. Provided

n is large enough, the choice D =
⌊√

n lnn
⌋

suffices. Note that under this choice D is arbitrarily

large if n is.

It is worth observing from the proof that a hypothetical sharp example for the bound in
Theorem 3.1.3 has maximum degree (1 + o(1))

√
n lnn.

To conclude the section, we comment that a straightforward substitution of Theorem 3.1.3 or
Corollary 3.4.1.1 together with Theorem 1.1.1 into the proof by Gimbel and Thomassen [56] (the
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proofs in [97, 102] being slightly less efficient) yields the following bounds. The constants are
roughly 2.5 and 3 times larger than the constant in Conjecture 3.4.2.

Proposition 3.4.2. As m → ∞, any triangle-free graph with m edges has fractional chro-
matic number at most (35/3 + o(1))m1/3/(lnm)2/3 and chromatic number at most (35/321/3 +
o(1))m1/3/(lnm)2/3.

The approach for Theorem 3.1.3 could possibly be adapted to more directly improve upon Propo-
sition 3.4.2, but we have not yet managed to do so.

3.5 Ramsey-type for sparse neighbourhoods

Let us now consider the independence number and the chromatic number of a graph with no
maximum degree restriction, where each neighbourhood is sparse instead of triangle-free. Namely,
let G be a graph on n vertices and of maximum degree ∆, where ∆ might be as large as n − 1.
Moreover, assume that each vertex belongs to at most T = ∆2/f triangles, for some fixed f ∈
[1,∆(G)2].

As we have seen in Chapter 1,

α(G) ≥ (1− o(1))
n ln ∆√

T

∆
= (1− o(1))

n ln
√
f

∆
. (3.9)

On the other hand, let v be a vertex of maximum degree in G, and let H be the subgraph
induced by N(v). So in particular n(H) = ∆, and since every edge in H yields a (distinct) triangle
containing v, it holds that e(H) ≤ ∆2/f . At this point, we can use the Caro-Wei theorem which
provides a lower bound on the independence number of graphs with a given degree sequence.

Theorem 3.5.1 (Caro, 1979, Wei, 1981 [27, 120]). For every graph G,

α(G) ≥
∑

v∈V (G)

1

1 + degG(v)
≥ n(G)

1 + ad(G)
.

The average degree of H is at most 2∆/f , so we infer from Theorem 3.5.1 that

α(H) ≥ ∆

1 + 2∆/f
. (3.10)

Since α(G) ≥ α(H), (3.9) and (3.10) provide two different lower bounds on α(G), respectively
decreasing and increasing as functions of ∆. The maximum of these two lower bounds is therefore
minimised when they are equal. This happens when ∆ = ∆0, where(

1

2
− o(1)

)
n ln f

∆0

=
∆0

1 + 2∆0/f
,

and so

∆0 ∼
n ln f +

√
n ln f(2f 2 + n ln f)

2f
.
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Substituting ∆ = ∆0 into (3.9), we obtain that

α(G) ≥ (1− o(1))
n ln f

(√
1 + 2f2

n ln f
− 1
)

2f
. (3.11)

The lower bound provided by (3.11) is asymptotic to f/2 if f = o(
√
n lnn) and to

√
n ln f/2

if f = ω(
√
n lnn), so this in particular extends Shearer’s bound on off-diagonal Ramsey numbers

to cover any f ≥ n1−o(1). Over the range of f as a function of n, (3.11) is asymptotically sharp
up to some reasonably small constant factor by considering the final output of the triangle-free
process [16, 52] or a blow-up of that graph by cliques.

By applying Lemma 3.4.1 with independent sets of the size guaranteed in (3.11), it follows that
as f →∞ the chromatic number of G is at most

(4 + o(1))
f

ln f
(√

1 + 2f2

n ln f
− 1
) . (3.12)

Is this the correct asymptotic order for the largest list chromatic number? Is the extra factor 2
unnecessary for the chromatic number? Even improving the bound only for the fractional chromatic
number by a factor 2 would be very interesting.

3.6 Bounds involving cubes

In this section, we prove Theorem 3.1.4. We also make some additional observations that link our
results with the fractional distance-3 chromatic number.

Let us first remark that, given the adjacency matrix A of a graph G, the total number of directed
three-edge walks in G is the sum of all entries in the matrix A3. The proof of Theorem 3.1.4
combines the proofs of Theorems 3.1.2 and of 3.2.1, without needing to bound the fractional
chromatic number.

Proof of Theorem 3.1.4. Let G = (V,E) be a triangle-free graph with |V | = n and |E| = m and
suppose G has w3 directed three-edge walks. We write q = w3/(2nm) and note that

q =

∑
x∈V

∑
v∈N(x)

∑
w∈N(v)

deg(w)

n
∑
x∈V

deg(x)
.

Let x1, x2 be two vertices chosen uniformly at random and let I1 := N(x1) and I2 := N(x2)
denote their neighbourhoods, which are independent sets by triangle-freeness. Note that E [|I1|] =
E [|I2|] = 1

n

∑
x∈V

deg(x), so also 1
2
E [|I1|+ |I2|] = 1

n

∑
x∈V

deg(x).
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The number of edges in the subgraph induced by I1 ∪ I2 satisfies

E
[
e
(
G[I1 ∪ I2]

)]
=
∑
I1,I2

P [(I1 = I1) ∩ (I2 = I2)] · e
(
G[I1 ∪ I2]

)
=
∑
I2

P [I2 = I2]
∑
I1

P [I1 = I1] · e
(
G[I1 ∪ I2]

)
=
∑
I2

P [I2 = I2] · E
[
e
(
G[I1 ∪ I2]

)]
=

1

n

∑
x∈V

E
[
e
(
G[I1 ∪N(x)]

)]
=

1

n

∑
x∈V

∑
v∈N(x)

E [|I1 ∩N(v)|]

=
1

n

∑
x∈V

∑
v∈N(x)

∑
w∈N(v)

deg(w)

n

=

∑
x∈V

∑
v∈N(x)

∑
w∈N(v)

deg(w)

n
∑
x∈V

deg(x)
· E [|I1|+ |I2|]

2

=
q

2
E [|I1|+ |I2|] .

By linearity of expectation,

E
[
|E(G[I1 ∪ I2])| − q

2
(|I1|+ |I2|)

]
≥ 0.

It follows that there are two independent sets I1 and I2 of G with at least q
2
(|I1|+ |I2|) edges

in the subgraph induced by I1 ∪ I2. Discarding the vertices of I1 ∩ I2 (if any) yields a bipartite
induced subgraph of average degree at least q. Therefore G contains a bipartite induced subgraph
of minimum degree at least q/2, as desired.

Next we indicate a mild improvement upon our bounds in terms of fractional distance-3 colour-
ing. Given a graph G, the cube G3 of G is the simple graph formed from G by including all edges
between vertices that are connected by a path in G of length at most 3. The fractional distance-3
chromatic number of G is the fractional chromatic number χf (G

3) of G3. Observe that, if G is
triangle-free and I is an independent set of G3, then the union ∪v∈IN(v) of neighbourhood sets
taken over I is an independent set in G. In the proofs of Theorems 3.1.2 and 3.1.4, if we sam-
ple independent sets by taking such neighbourhood unions according to the distribution given by
χf (G

3) rather than uniformly taking a neighbourhood set, then we obtain the following.

Theorem 3.6.1. Letting χ3
f denote the fractional distance-3 chromatic number of the host triangle-

free graph,

• the upper bound in Theorem 3.1.2 holds with χ3
f/d instead of n/d; and

• Theorem 3.1.4 holds with w3/
(
4χ3

fm
)

or d2/
(
2χ3

f

)
instead of w3/(4nm).

Curiously, as the triangle-free process is sharp in Theorem 3.1.2, we obtain the following.
(Perhaps this same result with distance-2 also holds.)
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Corollary 3.6.1.1. With high probability, the final output of the triangle-free process has Ω(n)
fractional distance-3 chromatic number as n→∞.

3.7 Concluding remarks

Although we were preoccupied with triangle-free graphs, one could naturally investigate graphs
not containing H as a subgraph for any fixed graph H. The following is in essence a more general
form of Problem 4.1 in [49].

Problem 3.7.1. Given a graph H, is there cH ∈ (0, 1) such that, as n→∞,

• if c > cH , then any H-free graph on n vertices with minimum degree nc has nΩ(1) bipartite
induced minimum degree; and

• if c < cH , then there is an H-free graph on n vertices with minimum degree nc and O(lnn)
bipartite induced minimum degree?

We have shown that cH = 1/2 if H is a triangle.
Problem 3.7.1 is particularly enticing when H is the complete graph Kr on r ≥ 4 vertices. It

was noted in [49] that the work of Ajtai, Komlós and Szemerédi [2] implies cKr ≤ 1 − 1/r (if it
exists). It is possible to adapt Theorem 3.3.2 and [112] to show that cKr ≥ 1− (r − 2)

/((
r
2

)
− 1
)

(if it exists). It is conceivable that cKr = 1− 1/(r− 1). A motivation for this is that, even though
prima facie there is no extremely close connection between bipartite induced density and large
independent sets, we are tempted to speculate that, denoting the H versus Kt Ramsey number by
R(H,Kt),

cH = 1− lim
t→∞

ln t

lnR(H,Kt)
(if they exist).

The right-hand side is conjectured to be 1− 1/(r − 1) when H is Kr.
Motivated by Problem 3.7.1, we observe the following partial extensions of the bounds in

Theorems 3.1.1 and 3.1.2.

Proposition 3.7.2. Fix an integer r ≥ 3. For r − 2 ≤ d ≤ n/2, any K1,1,r−2-free graph on n
vertices with minimum degree at least d has fractional chromatic number at most

(
n
r−2

)
/
(
d
r−2

)
, and

thus contains a bipartite induced subgraph of minimum degree at least d
2

(
d
r−2

)
/
(
n
r−2

)
.

Proof. Let G = (V,E) be a graph on n vertices with minimum degree at least d that contains
no copy of K1,1,r−2. We note that K1,1,r−2-freeness implies that the joint neighbourhood of every
vertex subset of size r − 2 is an independent set. Choose I from the joint neighbourhood sets of
(r − 2)-vertex subsets uniformly over all

(
n
r−2

)
such sets. Then it holds for all v ∈ V that(

n

r − 2

)
· P [v ∈ I] = # {T ⊆ N(v) | |T | = r − 2} ≥

(
d

r − 2

)
.

We have shown then that this distribution has property Q∗
( d
r−2)/( n

r−2)
.

Given a graph H = (VH , EH) and a positive integer x, let us define

χf (H, x) = max
v∈VH

max {χf (J) | J is an (H − v)-free graph on x vertices} .
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Proposition 3.7.3. Given a graph H, any H-free graph on n vertices with minimum degree at
least d and maximum degree at most ∆ has fractional chromatic number at most χf (H,∆) · n/d.

Proof. Let G = (V,E) be a graph on n vertices with minimum degree at least d and maximum
degree at most ∆ that contains no copy of H. For any v ∈ V , there is by definition of χf (H, x)
a distribution Pv over the independent sets of N(v) such that any given w ∈ N(v) is in Iv with
probability at least (χf (H, deg(v)))−1 ≥ (χf (H,∆))−1 for a random Iv chosen according to Pv.
For v uniformly chosen from V , let I = Iv be the corresponding random independent set. Then
any given u ∈ V is in I with probability at least deg(u)/(n · χf (H,∆)), so this distribution has
property Q∗d/(n·χf (H,∆)).

Let Pr (Cr) denote a path (cycle, respectively) on r ≥ 2 vertices. Every Pr-free graph is (r−2)-
degenerate and therefore (r − 1)-colourable. Thus χf (Cr+1, x) ≤ r − 1 and we have the following
corollary.

Corollary 3.7.3.1. Fix an integer r ≥ 3. Any Cr-free graph on n vertices with minimum degree d
has fractional chromatic number at most n

d
(r − 2), and thus contains a bipartite induced subgraph

of minimum degree at least 1
r−2
· d2

2n
.

In Section 3.4, we pursued sharper but fractional versions of the original problems of Erdős
and Hajnal [45]. In another direction, the natural list colouring versions are open to the best of
our knowledge.

Conjecture 3.7.1. There are constants C1, C2 > 0 such that any triangle-free graph on n vertices
with m edges has list chromatic number at most C

√
n/ lnn and at most C2m

1/3/(lnm)2/3.

Note that by a result of Alon [4], the two terms in Conjecture 3.7.1 are correct up to lnn and lnm
factors, respectively.
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[41] P. Erdős, A. L. Rubin, and H. Taylor. Choosability in graphs. In Proceedings of the West
Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ.,
Arcata, Calif., 1979), Congress. Numer., XXVI, pages 125–157. Utilitas Math., Winnipeg,
Man., 1980.
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deux passions. Je tiens à remercier Fabrice et Valentin pour toutes ces soirées de dégustation de
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