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Abstract. We show that the strong chromatic index of unit disk graphs
is efficiently 6-approximable. This improves on 8-approximability as
shown by Barrett, Istrate, Kumar, Marathe, Thite, and Thulasidasan [1].
We also show that strong edge-6-colourability is NP-complete for the
class of unit disk graphs. Thus there is no polynomial-time (7/6 − ε)-
approximation unless P= NP.

1 Introduction

A strong edge-k-colouring is a partition of the edges of a graph G into k parts
so that each part induces a matching (meaning that there exists no edge in G
between two edges of the same matching). The strong chromatic index is the
least k for which the graph admits a strong edge-k-colouring. If the vertices of
the graph represent communicating nodes, say, in a wireless network, then an
optimal strong edge-colouring may represent an optimal discrete assignment of
frequencies to transmissions in the network so as to avoid both primary and
secondary interference [1,18,20]. It is then relevant to model the network geo-
metrically, i.e. as a unit disk graph [9]. Our interest is in approximative algo-
rithmic aspects of strong edge-colouring in this model. This was considered by
Barrett, Istrate, Kumar, Marathe, Thite, and Thulasidasan [1] who showed that
the strong chromatic index of unit disk graphs is efficiently 8-approximable. We
revisit the problem and make some further advances.

– We prove efficient 6-approximability.
– We prove an efficient online 8-competitive algorithm.
– We show impossibility of efficient (7/6 − ε)-approximability unless P=NP.

It is ∃R-complete to decide if a given graph has an embedding as a unit disk
graph [11], but both of the approximation algorithms we use are robust, in the
sense that they efficiently output a valid strong edge-colouring upon the input
of any abstract graph. Our contribution is to prove that they are guaranteed to
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output a colouring with good approximation ratio upon the input of a unit disk
graph (regardless of any embedding).

Our work parallels and contrasts with work on the chromatic number of
unit disk graphs, for which the best approximation ratio known has stubbornly
remained 3 since 1991 [19]. Finding an optimal approximation for strong chro-
matic index may be similarly difficult.

1.1 Graph Colouring Preliminaries

In this subsection, we highlight some graph theoretic notation, concepts and
observations that are relevant to our study. For other standard background, con-
sult e.g. [6]. Given a graph G = (V,E), the minimum degree, clique number, chro-
matic number and maximum degree of G are denoted by δ(G), ω(G), χ(G) and
Δ(G), respectively. The degeneracy of G is defined as δ∗(G) = max{δ(H) |H ⊆
G} and G is called k-degenerate if δ∗(G) ≤ k. A simple but useful set of inequal-
ities for graph colouring is as follows. For any graph G,

ω(G) ≤ χ(G) ≤ δ∗(G) + 1 ≤ Δ(G) + 1. (1)

Note that the second inequality in (1) is algorithmic, in the sense that it fol-
lows from the use of an efficient greedy algorithm that always assigns the least
available colour, provided we consider the vertices one by one in a suitable order,
namely, according to degeneracy. Moreover, a greedy algorithm taking any order-
ing uses at most Δ(G) + 1 colours.

The line graph L(G) of G is the graph where a vertex in L(G) corresponds
to an edge in G and there is an edge between two vertices in L(G) if the cor-
responding edges in G share a vertex. The square G2 of G is the graph formed
from G by adding all edges between pairs of vertices that are connected by a
2-edge path in G. The strong chromatic index of G (as defined above) is denoted
χ′
2(G). Note that χ′

2(G) = χ(L(G)2). The strong clique number ω′
2(G) of G is

ω(L(G)2). Obviously, (1) implies that

ω′
2(G) ≤ χ′

2(G) ≤ δ∗(L(G)2) + 1 ≤ Δ(L(G)2) + 1. (2)

It is worth reiterating that the following greedy algorithm efficiently generates a
strong edge-(δ∗(L(G)2)+1)-colouring: order the edges of G by repeatedly remov-
ing from G an edge e for which degL(G)2(e) is lowest, and then colour the edges
sequentially according to the reverse of this ordering, at each step assigning as a
colour the least positive integer that does not conflict with previously coloured
edges. Again similarly, with an arbitrary ordering of the edges the greedy algo-
rithm produces a strong edge-(Δ(L(G)2) + 1)-colouring. Our main results then
follow from (2) by suitable bounds on δ∗(L(G)2) and Δ(L(G)2).

The strong chromatic index is a well-studied parameter in graph theory. Most
notably, Erdős and Nešetřil conjectured in the 1980s that χ′

2(G) ≤ 1.25Δ(G)2 for
all graphs G [7]. About a decade later, Molloy and Reed [17] proved the existence
of some minuscule but fixed ε > 0 such that χ′

2(G) ≤ (2−ε)Δ(G)2 for all graphs
G. Recently there have been improvements [2,3] and extensions [10,21], but
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all rely on Molloy and Reed’s original approach, a reduction to a Ramsey-type
colouring result. The conjecture remains wide open.

1.2 Unit Disk Graph Preliminaries

A graph G = (V,E) is said to be a unit disk graph if there exists a mapping
p : V → R

2 from its vertices to the plane such that uv ∈ E if and only if the
Euclidean distance between p(u) and p(v) is at most 1. Any explicit mapping
p that certifies that G is a unit disk graph is called an embedding. When we
have an embedding p, we often make no distinction between a vertex u and its
corresponding point p(u) in the plane.

The class of unit disk graphs is popular due to its elegance and its versatility
in capturing real-world optimisation problems [5]. For example, an embedded
unit disk graph may represent placement of transceivers so that circles of radius
1/2 centred at the points represent transmission areas. Indeed, the class was
originally introduced in 1980 to model frequency assignment [9], with chromatic
number being one of the first studied parameters. Clark, Colbourn and John-
son [5] published a proof that it is NP-hard to compute the chromatic number
of unit disk graphs. They also showed the clique number of unit disk graphs is
polynomial-time computable. Therefore, any upper bound C on the extremal
ratio r := sup{χ(G)/ω(G) |G is a unit disk graph} (algorithmic or not) implies
an efficient C-approximation of the chromatic number: simply output C · ω(G).
In 1991, Peeters [19] noted a simple 3-approximation which also shows r ≤ 3:
after lexicographically ordering the vertices of G according to any fixed embed-
ding, a basic geometric argument proves that G is 3(ω(G) − 1)-degenerate (and
then apply (1)). Since 3-colourability of unit disk graphs is NP-complete, there is
no efficient (4/3−ε)-approximation unless P=NP. It is known that r ≥ 3/2 [15].
The best approximation ratio known is 3.

1.3 Approximate Strong Edge-Colouring Preliminaries

Mahdian [13,14] showed in 2000 that it is NP-hard to compute the strong chro-
matic index, even restricted to bipartite graphs of large fixed girth. More recently,
Chalermsook, Laekhanukit and Nanongkai [4] showed that in general there is no
polynomial-time (n1/3−ε)-approximation algorithm (where n is the number of
vertices in the input) unless NP = ZPP.

To the best of our knowledge, no previous work has shown NP-hardness upon
restriction to the class of unit disk graphs. Nevertheless, Barrett et al. [1] have
initiated the study of approximate strong edge-colouring for unit disk graphs.
With an argument similar to in [19], they showed that δ∗(L(G)2) ≤ 8ω′

2(G)
for any unit disk graph G, which by (2) certifies an 8-approximation for the
strong chromatic index. Kanj, Wiese and Zhang [12] noted an efficient online
10-competitive algorithm with essentially the same analysis as in [1].
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1.4 Main Results and Outline

Our work improves significantly on [1] in several ways. In Sect. 2, we describe
the following.

Theorem 1. For any unit disk graph G, δ∗(L(G)2) ≤ 6(ω′
2(G) − 1).

Corollary 1. The greedy algorithm under a reverse degeneracy ordering of the
edges is an efficient 6-approximation for the strong chromatic index of unit disk
graphs.

The proof of Theorem1 is rather involved. It shows that, for any embedded
unit disk graph, some well-chosen edge-ordering certifies the required degeneracy
bound. It would be very interesting to improve on the approximation ratio of 6.
We prove the following in Sect. 3.

Theorem 2. For any unit disk graph G, Δ(L(G)2) ≤ 8(χ′
2(G) − 1).

Corollary 2. The greedy algorithm is an efficient online 8-competitive algo-
rithm1 for the strong chromatic index of unit disk graphs.

The proof of Theorem2 differs fairly from previous work [1,12] and from the
proof of Theorem1. Indeed the bound we give make use of the strong chromatic
index χ′

2(G) instead of the strong clique number ω′
2(G). To prove Theorem 2,

it suffices to solve the following kissing number-type problem. Given two inter-
secting unit disks C1 and C2 in R

2, what is the size of a largest collection of
pairwise non-intersecting unit disks such that each one intersects C1 ∪ C2? The
corresponding problem in R

3 seems quite natural.
In Appendix, we prove the following.

Theorem 3. Strong edge-k-colourability of unit disk graphs is NP-complete,
where k = 6 or k =

(
�
2

)
+ 4� + 6 for some fixed � ≥ 5.

Corollary 3. It is NP-hard to compute the strong chromatic index of unit disk
graphs. Moreover, it cannot be efficiently (7/6 − ε)-approximated unless P=NP.

For k ≤ 3, strong edge-k-colourability is polynomially-time solvable. The com-
plexity for k ∈ {4, 5} remains open. The proof of Theorem3 borrows from ideas
in the work of Gräf, Stumpf and Weißenfels [8], but with extra non-trivial diffi-
culties for strong edge-colouring.

1 To avoid any ambiguity, in the online setting vertices are revealed one at a time and
all edges between a newly revealed vertex and previous vertices must be immediately
and irrevocably assigned a colour.
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1.5 Further Discussion

We can state more general versions of our approximation results that not only
lend a more geometric flavour but also highlight a potential conceptual obstacle
to further improvements on our approximation results. We call a graph G =
(V,E) a twin unit disk graph if there exists a mapping p : V → R

2 × R
2, u 	→

(p(u)1, p(u)2) from its vertices to pairs of points in the plane such that

– the Euclidean distance between p(u)1 and p(u)2 is at most 1 for every u ∈ V ;
and

– uv ∈ E if and only if the Euclidean distance between p(u)1 and p(v)1, between
p(u)1 and p(v)2, between p(u)2 and p(v)1, or between p(u)2 and p(v)2 is at
most 1.

Equivalently, this is the intersection class over unions of pairs of intersecting unit
disks in R

2.
Note that, for any unit disk graph G, both G and L(G)2 are twin unit disk

graphs. (Indeed we represent L(G)2 by setting p(e)1 = p1 and p(e)2 = p2 for
any edge e = p1p2 in G.) So it is NP-hard to determine the chromatic number
of twin unit disk graphs.

We have the following stronger versions of Theorems 1 and 2, which imply
efficient 6-approximation and online 8-competitive algorithms for the chromatic
number of twin unit disk graphs (by (1)).

Theorem 4. For any twin unit disk graph G, δ∗(G) ≤ 6(ω(G) − 1).

Theorem 5. For any twin unit disk graph G, Δ(G) ≤ 8(χ(G) − 1).

Malesińska et al. [15] showed that there are unit disk graphs G for which δ(G) =
3(ω(G) − 1). In Appendix, we also show that there are twin unit disk graphs G
for which δ(G) ≥ 4(ω(G) − 2) + 1, and so the factor 6 in Theorem4 cannot be
improved below 4.

If we were able to efficiently compute or well approximate the clique num-
ber of twin unit disk graphs or, in particular, the strong clique number of
unit disk graphs, then we would have a strong incentive to bound r′

2 :=
sup{χ′

2(G)/ω′
2(G) |G is a unit disk graph}. This is a natural optimisation prob-

lem regardless. We only know r′
2 ≤ 6 by Theorem 1, and r′

2 ≥ 4/3 by considering
the cycle C7 on seven vertices (since χ′

2(C7) = 4 while ω′
2(C7) = 3). Relatedly,

we believe that the following problem is worth investigating.

Conjecture 1. It is NP-hard to compute the clique number of twin unit disk
graphs.

2 A 6-approximation

In this section we discuss the proof of Theorem 4, which has Theorem 1 as a
special case.
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To make the reader more familiar with the problem and the notations, we
first present a much shorter argument for a weaker approximation. The proof
is nearly the same as what Barrett et al. [1] used for an upper bound on the
approximation ratio of 8, but with a small twist.

Proposition 1. For any twin unit disk graph G, δ∗(G) ≤ 7(ω(G) − 1).

Proof. Let G = (V,E) be a twin unit disk graph. Fix any embedding p : V →
R

2 × R
2 of G in the plane. Equipped with such an embedding, we first define an

ordering of V and then use it to certify the promised degeneracy property.
The ordering we use for this result, a lexicographic ordering, is the same

used in [1]. This lexicographic order considers first the y-coordinate and then
the x-coordinate, (i.e. (a, b) is before (c, d) if and only if b < d or (b = d and
a ≤ c)). Throughout this paper, we simply refer to it as the lexicographic order
on R

2. Let (x1, y1), (x2, y2), . . . be a sequence of points in R
2 defined by listing

the elements of ∪u∈V {p(u)1, p(u)2} according to the lexicographic order on R
2.

We consider the points of this sequence in order and add vertices at the end of
our current ordering of V as follows. When considering point (xj , yj) for some
j ≥ 1, we add all vertices u ∈ V for which there is some i ≤ j such that
{p(u)1, p(u)2} = {(xi, yi), (xj , yj)}, and we do so according to the lexicographic
order on R

2.
It suffices to show that each vertex u ∈ V has at most 7(ω(G)−1) neighbours

that precede it in the lexicographic ordering. To do so, we show that every such
neighbour v of u satisfies that either p(v)1 or p(v)2 is contained in one of seven
unit (π/3)-sectors (each of which is centred around either p(u)1 or p(u)2). This
is enough, since the set of vertices that map one of their twin points into one
such sector induces a clique in G that includes u. The proof differs from what
Barrett et al. did in [1] by the fact that we use seven unit (π/3)-sectors instead
of eight.

Let u ∈ V and suppose without loss of generality that p(u)1 is before p(u)2 in
lexicographic order. First observe that, if v ∈ V is before u in the lexicographic
order, then both p(v)1 and p(v)2 must be in the region of R

2 that has smaller or
equal y-coordinate compared to p(u)2. If, moreover uv ∈ E, then p(v)1 or p(v)2
must lie in either a unit half-disk centred at p(u)2 or in the unit disk centred at
p(u)1. We partition the unit disk centred at p(u)1 into six unit (π/3)-sectors such
that the line segment [p(u)1, p(u)2] lies along the boundary between two of the
sectors. Note that any of the points in the two sectors incident to [p(u)1, p(u)2]
also lies in the unit disk centred at p(u)2. Figure 1 depicts the construction, with
sectors separated by solid lines. Therefore, the four other sectors together with
the three sectors that partition the unit half-disk centred at p(u)2 are the seven
unit (π/3)-sectors that we desire. 
�
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Fig. 1. The seven sectors
one of which must contain
p(v)1 or p(v)2.

It turns out that for Theorem4 we can take the
same approach as in Proposition 1, except with an
ordering that is more subtle and an analysis that
is substantially longer and more difficult. Since our
arguments are “only” geometric, we feel that the
ratio 6 can be improved, especially in Theorem 1. It
should be possible to exploit the structural graph
properties of L(G)2, but our efforts have so far
failed. This might be difficult.

2.1 Proof Outline of Theorem4

Let G = (V,E) be a twin unit disk graph. Fix any
embedding p : V → R

2 × R
2 of G in the plane.

Without loss of generality, we may assume that this
embedding satisfies for all u ∈ V that p(u)1 is before
p(u)2 according to the lexicographic order on R

2.
We define a preorder � on V as follows. For any u, v ∈ V ,

u � v if and only if p(u)1 is not after p(v)1 according to the lexicographic order on R
2.

Note that if p(u)1 = p(v)1, then both u � v and v � u.
For any u ∈ V , we define N−(u) as the set of v ∈ V , v 
= u such that

v ∈ N(u) and v � u. It suffices to show that |N−(u)| ≤ 6(ω(G) − 1) for each
u ∈ V .

Fix such a vertex u ∈ V . Let h+ be the open half-plane of points above p(u)1
and h− the closed half-plane of points not above p(u)1. For a point w, let Cw

(respectively Dw) denote the circle (respectively the closed disk) with radius 1
centred at w. Let X(u) be the union of X−(u) := (Dp(u)1 ∪ Dp(u)2) ∩ h− and
the set X+(u) of elements of (Dp(u)1 ∪ Dp(u)2) ∩ h+ at distance at most 1 from
a point of h− \ (Dp(u)1 ∪ Dp(u)2).

Similarly to the proof of Proposition 1, we aim to cover X(u) with six sections
that each correspond to a clique of G. Instead of requiring that these sections
have diameter at most 1 (as we do for proving Proposition 1), we make use of
sections having the following weaker property:

a section S ⊆ R
2 is small if it can be partitioned into two parts S+ and S−

of diameter at most 1 and such that

1. S+ ⊆ h+; and
2. for all points q ∈ S−, p2 ∈ S+ and p1 ∈ h− \ (Dp(u)1 ∪ Dp(u)2) such that p1

and p2 are at distance at most 1, the point q is at distance at most 1 from p1
or p2.

This property is always satisfied if S has diameter at most 1, as it then suffices
to take S− := S and S+ := ∅.
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Let S = S+ ∪ S− be a section, with S+ ⊆ h+. Let C be the set of vertices
v such that one of p(v)1 and p(v)2 is in S−, or (p(v)2 ∈ S+ and p(v)1 ∈ h− \
(Dp(u)1 ∪ Dp(u)2)). We say that S induces a clique if (v, w ∈ C =⇒ vw is an
edge).

Let S be a small section, with S+ and S− as in the definition. Then S induces
a clique. Indeed, take v, w ∈ C as defined above, and let us prove that vw is an
edge. If p(v) and p(w) both contain a point in S+ or both contain a point in S−,
then these points are at distance at most 1 because S+ and S− have diameter
at most 1, which implies that vw is an edge. Using the definition of C, we may
therefore assume without loss of generality that p(v)1 ∈ S−, p(w)2 ∈ S+ and
p(w)1 ∈ h− \ (Dp(u)1 ∪ Dp(u)2), which implies that p(v)1 is at distance at most
1 from p(w)1 or p(w)2 because S is small.

The theorem then follows from the following statement:

Claim 1. For every vertex u, X(u) can be covered by six sections S1, . . . , S6 that
induces a clique.

Let us first see why Claim 1 implies |N−(u)| ≤ 6(ω(G) − 1) (and therefore
Theorem 4). For each section Si, let S+

i and S−
i be as in the definition of inducing

a clique. For every i ∈ {1, . . . , 6}, let Ci be the set of vertices v such that one
of p(v)1 and p(v)2 is in S−

i , or (p(v)2 ∈ S+
i and p(v)1 ∈ h− \ (Dp(u)1 ∪ Dp(u)2)).

By definition, all Ci are cliques.
It remains to show that

⋃6
i=1 Ci covers N−(u). A vertex v is in N−(u) if

p(v)1 ∈ h− and one of p(v)1 and p(v)2 is in Dp(u)1 ∪ Dp(u)2 . In the case where
one of p(v)1 and p(v)2 is in S−

i for some i ∈ {1, . . . , 6}, then v ∈ Ci. We can
now assume that p(v) does not intersect

⋃6
i=1 S−

i . We know that S+
i ⊆ h+ for

every i ∈ {1, . . . , 6} and that
⋃6

i=1 Si covers X−(u), so p(v) does not intersect
X−(u) = (Dp(u)1 ∪ Dp(u)2) ∩ h−. This enforces that p(v)1 ∈ h−\(Dp(u)1 ∪ Dp(u)2)
and p(v)2 ∈ (Dp(u)1 ∪ Dp(u)2) ∩ h+. Since p(v)1 and p(v)2 are at distance
at most 1, the point p(v)2 belongs to X+(u), so there is i ∈ {1, . . . , 6} with
p(v)i ∈ S+

i . As a consequence, the vertex v is in the clique Ci.
It remains to prove Claim 1. Due to space limitations, parts of this proof are

postponed to Appendix. In the following, we mainly describe the construction
of the sections.

Construction of the Sections. Let ρ be the length and θ the argument of
the vector p(u)2 − p(u)1. Without loss of generality, we may assume that the
position of p(u)1 is (0, 0) and that both coordinates of p(u)2 are not negative,
so that 0 ≤ θ ≤ π/2. The position of p(u)2 is therefore ρ(cos(θ), sin(θ)).

We have three different constructions of the sections S1, . . . , S6 depending
on θ and ρ. We distinguish a first case when θ ≤ π/6, a second case when π/6 < θ
and ρ ≤ 2 cos θ, and a last one when 2 cos θ < ρ.

If w1, w2 and w3 are three points pairwise at distance 1, the thickened triangle
with vertices w1, w2 and w3 is the area Dw1 ∩ Dw2 ∩ Dw3 . A thickened triangle
has diameter 1.
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First Case: 0 ≤ θ ≤ π/6

Claim 2. Sections S4 and S6 have diameter at most 1 and Sections S1 and S2

are small.

Fig. 2. The six sections when 0 ≤ θ < π/6. (Color figure online)

Let a be the lower intersection of Cp(u)1 and Cp(u)2 . Let a′ be the point
(−1, 0) (so a′ is the leftmost intersection of Cp(u)1 and the abscissa line). Like-
wise, let a′′ be the point p(u)2 + (1, 0). Figure 2 shows the six sections we
are defining now. Section S1 (in yellow in Fig. 2) is defined as the intersection
between Dp(u)1 , Da′ , and the half-plane above the line through p(u)1 and the
point b := (−√

3/2,−1/2). Let Section S2 (in red in Fig. 2) be the intersection
between Dp(u)2 , Da′′ and the half-plane above the line through p(u)2 and the
point c := p(u)2 + (

√
3/2,−1/2). Let Section S3 (in purple) be the thickened

triangle with vertices p(u)1, b and q1 := (0,−1). Section S4 (in green) is defined
as Dp(u)1 ∩ Dp(u)2 ∩ Da \ (Db ∪ Dc). Section S5 in cyan is the thickened triangle
with vertices p(u)2, c and q2 := p(u)2 +(0,−1). Lastly, let S6 = X(u)\ (

⋃5
i=1 Si)

be the remaining section.
These six sections cover X(u) by the definition of S6. Sections S3 and S5

are thickened triangles so they have diameter 1. To prove the proposition in this
case, it is enough to show the following property.

For some values of ρ (for instance ρ = 1), when θ is greater than π/6, the
Euclidean distance between q1 and a is bigger than 1, hence so is the diameter
of S6. Therefore we have different constructions when π/6 < θ.

Second Case: π/6 < θ and ρ ≤ 2 cos(θ). Figure 3 depicts the six sec-
tions. A simple calculus shows that the position of a is 1

2 (ρ cos(θ) +√
4 − ρ2 sin(θ), ρ sin(θ) −

√
4 − ρ2 cos(θ). The fact that ρ is at most 2 cos(θ)

implies that the point a is not above the abscissa line. We denote by r the point
(−1, 0). The conditions π/6 < θ and ρ ≤ 2 cos(θ) do not imply anything on
whether (Dp(u)2 ∩ Dr) \ Dp(u)1 is empty or not. Let s1 be the highest point in
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Fig. 3. The six sections when π/6 < θ and ρ ≤ 2 cos θ. (Color figure online)

(Dp(u)1 ∩ Dr) \ Dp(u)2 . Note that if (Dp(u)2 ∩ Dr) \ Dp(u)1 is empty then the
position of s1 is (−1/2,

√
3/2). Let s2 be at the left intersection of Cs1 and the

abscissa line. Let s′
2 be the translated of s2 by the vector (1, 0). Let s3 be the

intersection of Cp(u)1 and Cs′
2

that is below the abscissa line (if p(u)1 and s′
2 have

the same position, the position of s3 is set to (0,−1)). Let s4 (respectively s5)
be the point at the intersection of Cp(u)1 and Cs3 that is on left side (respectively
right side) of the line (p(u)1, s3). Observe that if (Dp(u)2 ∩ Dr)\Dp(u)1 is empty
then the positions of s2, s′

2, s3, s4 and s5 are respectively (−1, 0), (0, 0), (0,−1),
(−1/2,−√

3/2) and (1/2,−√
3/2). Let S1 (in yellow) be the section defined as

the union of Dp(u)1 ∩ Dr ∩ h+ and the intersection between Dp(u)1 , h− and the
half-plane above the line (p(u)1, s4). If (Dp(u)2 ∩ Dr)\Dp(u)1 is empty, then S1 is
exactly as in the precedent case. Let S2 (in blue) be the thickened triangle with
vertices p(u)1, s3 and s4. Let S3 (in purple) be the thickened triangle with ver-
tices p(u)1, s3 and s5. Let p be the rightmost point of Cp(u)2 with height 1. Let q
be the point of Cp(u)2 such that pqp(u)2 is a clockwise equilateral triangle (there-
fore with sides of length 1). Let S4 (in red) be the thickened triangle with these
three vertices. Let S5 (in green) be the thickened triangle with vertices p(u)2, q,
and a third vertex inside the purple section S3. Let S6 = X(u) \ (

⋃5
i=1 Si) (in

grey) be the remaining section.
It is clear from the definition of S6 that

⋃6
i=1 Si covers X(u). Sections S2,

S3, S4 and S5 have diameter 1 as thickened triangles. To prove the proposition
in this case, it suffices to check the following.

Claim 3. Section S1 induces a clique and S6 is small.

When θ < π/6, for some values of ρ, the section S6 is too big, and does not
induce a clique. Likewise, for some values of ρ and θ with 2 cos θ < ρ, S6 is too
big. This is why we use different constructions for the two other cases.
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Fig. 4. The six sections when 2 cos θ < ρ. (Color
figure online)

Third Case: 2 cos(θ) < ρ.
The construction for this
last case is illustrated in
Fig. 4. Note that 2 cos(θ) <
ρ implies that θ is larger
than π/3. It also implies
that the point a is above
the abscissa line. The con-
struction of the six sec-
tions is more complicated in
this last case. We denote
by r0, r1, r2 and r3 the
points (−1, 0), (−1/2,−√

3/2),
(1/2,−√

3/2) and (1, 0). Let
S1 (in blue) be the thickened
triangle with vertices p(u)1,
r0 and r1. Let S2 (in green)
be the thickened triangle with
vertices p(u)1, r1 and r2 and
let S3 (in red) be the thick-
ened triangle with vertices
p(u)1, r2 and r3. Let b be the upper intersection between the circles Cp(u)2 and
Cr0 . Note that the circles Cb and Cr1 intersect in r0, and let c be their second
intersection. Let c′ be the translated of c by the vector (1, 0). Section S4 (in
purple) is defined as the thickened triangle with vertices c, c′ and a third point
uniquely defined with positive y-coordinate. Let S5 (in yellow) be the thickened
triangle with vertices r0, b and a point inside the section S4 (in purple). Set
S6 = X(u) \ (

⋃5
i=1 Si).

Sections S1, S2, S3, S4 and S5 have diameter 1 because they are thickened
triangles. To conclude this case and finish the proof, it suffices to show the
following property.

Claim 4. Section S6 is small.

For this construction, b must not be inside Dp(u)1 , otherwise the distance
between r0 and c would be greater than 1. This is always true when 2 cos θ <
ρ, but not guaranteed for other values. For instance if ρ = 1, then b is not
inside Dp(u)1 if and only if 2 cos(θ) ≤ ρ, i.e. θ ≥ π/3, which is why we use this
construction only for this case.

The proofs of Claims 2, 3 and 4 can be found in Appendix.

3 An Online 8-competitive algorithm

Our focus in this section is to prove Theorem 5, which directly implies Theo-
rem 2. As alluded to earlier, we make use of the following kissing number-type
result, which may be of independent interest. The corresponding problem in R

3

is interesting and may be difficult.
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Theorem 6. Let x1 and x2 be two points in R
2 within Euclidean distance 1.

Let Y be a collection of points in R
2 pairwise of Euclidean distance greater than

1 such that either y and x1 or y and x2 are within Euclidean distance 1 for any
y ∈ Y . Then |Y | ≤ 8.

Fig. 5. Theorem 6 is tight.

Note that this result is sharp as illus-
trated in Fig. 5. Take x1 and x2 to be
at Euclidean distance 1, and choose the
8 points in Y as in a partial optimal
circle packing configuration. Now it is
possible to shift one of the vertices that
are at Euclidean distance 1 from both
x1 and x2, and to perturb slightly the
position of the others, so that all points
in Y are pairwise of Euclidean distance
greater than 1. Before giving the proof
of Theorem 6, we first show how it readily implies Theorem 5.

Proof (Proof of Theorem 5). Let G = (V,E) be a twin unit disk graph and fix
an embedding p : V → R

2 × R
2. Let u ∈ V be a vertex of degree Δ(G) and

consider the set N(u) of neighbours of u in G. Without loss of generality, we
may assume that for any v ∈ N(u) either p(v)1 and p(u)1 or p(v)1 and p(u)2
are within distance 1. It follows from Theorem6 that the subgraph of G induced
by N(u) has no independent set with more than 8 vertices. We know that this
induced subgraph can be properly coloured with at most χ(G) − 1 colours. We
therefore conclude that Δ(G)/8 = |N(u)|/8 ≤ χ(G) − 1, which completes the
proof. 
�

We prove Theorem 6 through a succession of geometric lemmas. In these
lemmas, we treat points in R

2 as hypothetical vertices of an embedded unit disk
graph, so we speak of pairs of them as adjacent, i.e. within Euclidean distance
1, or not.

Lemma 1. Let u, v, v′ be points in R
2 such that u and v are adjacent, u and v′

are adjacent, and v and v′ are non-adjacent. If we shift v further from u in the
direction of the line segment [u, v] until u and v are non-adjacent, then v and v′

remain non-adjacent.

Proof. Assume without loss of generality that the position of u is (0, 0) and that
the first position of v is (z, 0) with 0 < z ≤ 1 before going to (1, 0). We denote
the position of v′ as (x, y). As can be deduced from the proof of the Lemma 3.1
in [16], the angle between the line segments [u, v] and [u, v′] is at least π/3.
Thus x ≤ 1/2, and so 2x ≤ 1 + z. Then we obtain 2x(1 − z) ≤ 1 − z2 and so
z2−2xz ≤ 1−2x. We also know (x−z)2+y2 > 1 since v and v′ are non-adjacent.
Now (x − 1)2 + y2 = x2 + 1 − 2x + y2 ≥ x2 + z2 − 2zx + y2 = (x − z)2 + y2 > 1.
Thus the distance between v and v′ is still larger than 1. 
�
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Lemma 2. Let u, v, u′, v′ be points in R
2 such that u and v are adjacent, u

and u′ are adjacent, v and v′ are adjacent, u and v′ are non-adjacent, v and u′

are non-adjacent, and u′ and v′ are non-adjacent. Then one of the following is
true.

– If we shift u′ further from u in the direction of the line segment [u, u′] until
u and u′ are non-adjacent, then u′ remains non-adjacent with v and v′.

– If we shift v′ further from v in the direction of the line segment [v, v′] until v
and v′ are non-adjacent, then v′ remains non-adjacent with u and u′.

Proof. Figure 6 depicts one potential situation covered by Lemma2. Assume
without loss of generality that the position of u is (0, 0) and the position of v
is (1, 0). If the abscissa coordinate of u′ or v′ is not between 0 and 1, then it
is possible to shift this point as claimed. Assume that the abscissa coordinate
of both points is between 0 and 1. Then one must be above the other. Assume
that u′ is above v′, for consistency with Fig. 6. We may also assume that they
are both above the abscissa line, otherwise the claim is immediately true. By
Lemma 1, we know that shifting u′ until its distance to u is 1 will not make it
adjacent to v. Moreover, since the abscissa of u′ and v′ is between 0 and 1, the
line segment [u, u′] goes through the disk with radius 1 centred at v′. As u′ is not
in this disk, and because a disk is convex, shifting u′ as claimed will not return
it to the disk. If instead v′ is above u′, then shifting will instead be possible for
v′ because of the same arguments. 
�

u v

u′

v′

w

• •

•

•

•

Fig. 6. By shifting u′ to the position of w, it remains non-adjacent to v and to v′.

Lemma 3. Let u and u′ be points in R
2 such that u and u′ are adjacent. Let

v1, . . . , v8 be eight pairwise non-adjacent points in R
2 each of which is adjacent

to u or to u′. Then some vi is adjacent to both u and u′.

Proof. We assume that no vi is adjacent to both u and u′, and show that this
leads to a contradiction. Without loss of generality, assume that the position
of u is (0, 0) and the position of u′ is (d, 0) with 0 < d ≤ 1. Denote by Vu

(respectively Vu′) the set of those vi adjacent to u (respectively u′). We add to
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the abscissa of u′ and all the points in Vu′ the value 1−d. Thus u and u′ are still
adjacent and the points in Vu′ are still adjacent to u′. Note that the bisector of
the line segment [u, u′] separates the points in Vu from the points in Vu′ . Indeed
if a point is in Vu, it is closer to u than u′, and vice versa. Thus the points {vi}i

are still pairwise non-adjacent. Now the position of u′ is (1, 0).
The star graph K1,6 is not a unit disk graph. Thus since the points in

Vu ∪ {u′} are pairwise non-adjacent and adjacent to u, we have |Vu| < 5. By the
same reasoning we obtain |Vu′ | < 5. Thus we have |Vu| = |Vu′ | = 4. Without loss
of generality, assume that we have Vu = {v1, v2, v3, v4} and Vu′ = {v5, v6, v7, v8}.
We order the points in Vu. For a point v we will consider the oriented angle
between the line segments [u, v] and [u, u′] taken in [0, 2π). Note that two points
cannot have the same angle value. Thus we can order the points from the small-
est angle value to the largest. We apply the same process to the points in Vu′ . For
a point v′, we consider the angle between [u′, v′] and [u′, u]. Without loss of gen-
erality we can assume that the points in Vu appear in the right order. Figure 7a
depicts the ordering. (Of course, since we are going to show a contradiction, the
graph in the figure cannot satisfy the assumptions we have taken.)

Now we move the point v2 further from u in the direction of the line segment
[u, v2] until the distance between v2 and u is 1. By Lemma 1, we know that
when v2 is shifted in this way, it will not become adjacent to any other point in
{vi}i. We apply the same process to v3, v6 and v7. By Lemma 2, it is possible
to shift either v1 or v8, and either v4 or v5. Without loss of generality, assume
that it is possible to shift v1. Denote by θ ∈ [0, 2π) the angle between the line
segments [u, v1] and [u, u′]. By the same arguments as above, we have θ > π/3.
Thus the angle between [u, v4] and [u, u′] taken in [0, 2π) is larger than θ + π.
Let us consider the angle between [u′, v7] and the abscissa line. It is less than
θ − π/3, because otherwise v8 must be adjacent to u or v1, as we prove in
the next paragraph. Thus the worst case is when the angle is exactly equal to
θ −π/3. We have u at position (0, 0), u′ at (1, 0), v1 at (cos(θ), sin(θ)) and v7 at
(1 + cos(θ − π/3), sin(θ − π/3)).

We move v8 so that it is at distance 1 from both u and v7. This is theoretically
not possible because v8 is not adjacent to those points, but we are going to show
that even in this case we have v8 at distance 1 from v1. Since this position is the
furthest v8 could be from v1, this shows a contradiction, and thus that the angle
between [u′, v7] and the abscissa line must be less than θ − π/3. Let us compute
the position (x, y) of v8. We have x2 + y2 = 1 and (x − 1 − cos(θ − π/3))2 + (y −
sin(θ − π/3))2 = 1. There are two possible solutions. One is (1, 0), which is the
position of u′, and the other is the position of v8: (cos(θ − π/3), sin(θ − π/3)).
Figure 7b depicts the position of the points. But then the distance between v1
and v8 is equal to 1. Thus, even if we take v8 to be the furthest possible from
v1, they are still too close. Thus we know that the angle between [u′, v7] and
the abscissa line taken in [0, 2π) must be larger than θ − π/3. Hence the angle
between [u′, v6] and the same line taken into [0, 2π) must be less than θ + 4π/3,
and the angle between [u′, v5] and the same line must be less than θ + π. We
have seen that either v4 or v5 can be pushed until their distance to u or u′ is 1.
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If it is possible for v4 we can apply what we did before to v4 and v6 to obtain a
contradiction. If it is possible for v5, we then apply the reasoning to v3 and v5.
In any case we have a contradiction, which concludes the proof of the lemma.
�

• •

•
•

•

•

•

•

•
•u u′

v1

v2

v3

v4

v8

v7

v6

v5

(a) Ordering of the vertices.

• •

•• •

u u′

v7v8

v1

(b) Position of the considered vertices at the
end of the proof.

Fig. 7. Illustration of Lemma 3

Proof (Proof of Theorem 6). Let Y in the statement of the theorem be
{y1, . . . , y9} for a contradiction. For any eight points in Y , Lemma 3 guaran-
tees that at least one of them is within Euclidean distance 1 of both x1 and x2.
Without loss of generality, we may thus assume that both y1 and y2 are within
Euclidean distance 1 to both x1 and x2. Of the seven remaining points of Y ,
at least four of them must be within Euclidean distance 1 of, say, x1, by the
pigeonhole principle. But then x1 is within Euclidean distance 1 of six points
that are pairwise of Euclidean distance greater than 1, which is impossible. 
�
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